Design of the EIC Zero Degree Calorimeter

Shima Shimizu

26/Oct./2021 RBRC exp. meeting

My activities in ECCE EIC

- ► EIC ZDC design → Today
 - First design implemented in the ECCE software in May.
 - Performance study against single particles
 - Using energy deposits (= no readout) in Geant simulation.
 - 1 particle per event. (Neutron or photon)
 - \rightarrow Estimation of energy and position resolution.
 - \rightarrow Optimization of the ZDC design
- Inclusive DIS cross section measurements
 - Preparation of MC samples
 - Simulation study for Charged Current measurement
 - Using fully simulated sample.
 - \rightarrow Check if the measurement is doable.

EIC Zero Degree Calorimeter

- A calorimeter to tag photons and neutrons in the proton beam forward direction.
 - 37.5 m (33.5 m) away from the interaction point of IP6 (IP8).

IP6, but x direction is flipped upside down

Relevant Physics

Please see YR (arXiv:2103.05419) for details (sec. 8.4, 8.5)

 γ ,Z⁰,W[±]

π⁰,π⁺, K⁰,K⁺,B⁰

p',**n**',Λ',Σ⁺,Σ⁺_b

e-/e+

- Spectator neutron tagging in e+d DIS (e + d \rightarrow e' + X + n)
 - → Nuclear modifications of p and n structure, such as EMC effect.
 - Diffractive J/ Ψ in e+d scattering (arXiv: 2005.14706)
 - → Short range correlation (SRC)
- Exclusive vector meson production in e+A
 - \rightarrow Sensitive to saturation
 - Separation of coherent vs incoherent processes
 - ²⁰⁸Pb de-excitation
- u-channel exclusive electroproduction of π^0 (e + p \rightarrow e' + p' + π^0)
 - \rightarrow Nucleon-to-meson Transition Distribution Amplitudes
- Meson structure (Sullivan process)
 - e+p->(π) -> e'+X+n
 - A decay
- Cross section and asymmetry measurement of leading neutrons

Physics requirements

- Neutrons
 - Need to measure neutrons with **E~E**^{beam}
 - Energy resolution: acceptable 50%/VE + 5%, ideally 35%/VE + 2%
 - Angular resolution: 3mrad/VE
 300 μrad <-> 1 cm on ZDC <-> p_T~ 30 MeV for 100 GeV neutron
 - Large acceptance of 60cm x 60 cm.
- Photons
 - Detect soft photons of O(100) MeV
 - Efficiency > 90%
 - Energy resolution: 20 30%
 - Detect photons of **20-40 GeV**
 - Energy resolution: 35%/vE
 - 2 photons from π^0
 - Nominal distance of 2 photons: 14 cm
 - neutron + 2 photons (Λ decay), neutron + 3 photons (Σ⁰ decay)
 Position resolution: 0.5-1mm

The first ZDC design (May 2021)

Concept: Crystal + FoCal style EM calorimeter + Hadron Calorimeter

Neutron energy reconstruction:

Quick estimation of neutron reconstruction factors

The designed ZDC consists of (crystal and) 3 types of sampling calorimeters.

• Energy reconstruction for neutrons is not simple.

- → Estimation of factors to convert deposited energy [MeV] → reconstruction energy [GeV]
- Estimation is done by two methods:
 - (Step-by-step estimation) ← not shown today.
 - Fit
- Check energy resolution and energy leakage.

<u>Note</u>:

We are still at designing of the ZDC

- Aim is to obtain reasonable factors but not the best factors.
- This is to understand any feature of the designed ZDC.

estimation by fit

Neutron energy reconstruction: Parameters from fit

- The energy response in each detector looks quite linear.
- Extract parameters from fits:

 $a \cdot E_{SI (W/SI)} + b \cdot E_{SI (Pb/SI)} + c \cdot E_{Sci} = E_N$ (E_N = Neutron energy)

Fit is done for each energy sample (E_N = 20, 40, 60, 80, 100 GeV)

• A Pb/Sci box is further added. Events analysed have no energy deposits in the last 5 layers.

- Five fits give more-or-less consistent results.
- Parameter for Pb/SI has large correction from the previous step-by-step estimation.
- Parameters for silicon shows a small sample-energy dependence.

Check of reconstruction

- Energy dependence is introduced in the factors, based on made-up slopes by eye.
- Reconstruction bias is very little for both of 10 GeV and 200 GeV photons

Neutron Energy Reconstruction with Full Detector + additional Pb/Sci box

- Large bias is seen for lower energy neutrons.
- Resolution is already larger than the ideal value (35%/VE + 2%) in YR but smaller than the required value (50%/VE + 5%).
 - Estimation is based on the energy in active materials. Readout etc. will increase the resolution.

Energy leak for neutrons

• The first design has two box of Pb/Sci instead of three.

> 1 % of energy leak for 5-10 % of events.

Photon position reconstruction

Physics requirement:

Position resolution of (0.5~) 1 mm

- Checked with three setups:
 - 7 cm (7.9X₀) thickness of Crystal
 - 10 cm (11 X₀) thickness of Crystal
 - 15 cm (16 X₀) thickness of Crystal
- Analysis:
 - 1. Photons are shot at the center of the plane (0,0).
 - 2. Reconstruct the photon position using the 1st crystal layers. Energy weighted mean of 3×3 towers $\rightarrow (x_{Crystal}, y_{Crystal})$
 - Look into the pixel cells on the next layer, around (x_{Crystal}, y_{Crystal}).

Photon position reconstruction on Pixel 1

7 cm crystal

10 cm crystal

15 cm crystal

x_{Pix 1} [cm]

Photon energy reconstruction

- Physics requirement:
 - 20 30 % energy resolution for O(100) MeV photons
 - 35%/VE energy resolution for O(10) GeV photons

Photon energy reconstruction

 $E_{\text{Reco, total}} = E_{\text{Reco, crys.0}} + E_{\text{Reco, crys.1}} + E_{\text{Pix1}} + E_{\text{reco, W/SI}}$

Crystal

- Clustering of EM crystal towers
 - Take a tower with E_{tower}> 15 MeV as a seed tower.
 - 3x3 towers with a seed as the center \rightarrow cluster
 - Cluster raw energy is $\sum_{3\times 3} E_{tower}$

Based on CMS and PANDA: ~20 cm crystals Also tried $\frac{5\%}{\sqrt{E}} + 1\%$

- Cluster raw energy is smeared based on $\frac{2.5\%}{\sqrt{E}} + 1\% \stackrel{/\!\!\!/}{
 ightarrow}$ "Reco." cluster energy
- On the 1st crystal layer (Crystal 0), a cluster with the highest energy is taken.
- On the 2nd crystal layer (Crystal 1), a cluster close to the cluster on the Crystal 0 is taken.
 <u>Pixel 1</u>
- 11x11 cells Rol is formed around (x, y) of Crystal 0 cluster. Energy deposit in Rol is taken.
 <u>W/SI</u>
- 9cm x 9cm RoI is formed around (x, y) of Crystal 0 cluster.
 - "Reco." energy = 82.7 * Energy sum in Rol.

Reconstructed photon energy

Setup: 1 Crystal layer

O(100) MeV photons: O(10) GeV photons: Most of the energy measured in the 1st Crystal layer. All of the Crys.0, Crys.1, and W/SI contribute to the reconstruction.

Some details...

- Clustering of Crystal tower
 - 15 MeV seed gives reasonable reconstruction efficiency for both 20 GeV and 100 MeV photons

events events 900F E=20 GeV E=100 MeV 800 Number or 800 700F clusters on the 600F 600 500F **1st Crystal layer** 400 400 (Crystal 0) 300F 200 200 100F 2 3 4 6 3 4 5 N Cluster (Crystal 0) N Cluster (Crystal 0) W/SI energy reconstruction events $E_{W/SI Reco} = E_{W/SI Rol, raw} \times \underline{82.7}$ 10 GeV photor 120 20 GeV photons • Scale factor 82.7 is obtained from - 40 GeV photons

direct shots of photons on W/SI layers (No crystal)

Events with $E_{Abs. (W+PET)} + E_{SI} > 99\%$ of beam energy are analysed.

→ SF = 82.7

Photon energy leakage to hadron calorimeter

- Energy in Pb/SI layer (HC part)
 - Not significant for most of the events, even for 40 GeV photons on 1 Crystal-layer setup.
 - Maximum 5 MeV in SI
 - \rightarrow corresponds to ~ 2 GeV * = 5% of E_v

Summary of photon energy reconstruction

 $E_{\text{Reco, total}}$ / E_{y} distributions are fitted.

(Note: No energy correction for Rol use (Crystal, Pix1, W/SI) and for energy leakage)

Both 1 Crystal and 2Crystals setups have better resolution than required.

• 1 Crystal layer will double the size of resolution, but still better than required.

Update of the design

- The first ZDC design is:
 - Good for photon and neutron energy measurements, but
 - Too expensive
 - Not optimal for photon position measurement

Design update

- 7 cm crystal is preferred to 10 cm.
- W/SI layers can be reduced to **22 layers** from 42 layers.
- Crystal layer can be a single layer.

Performance plots for the second design

- Longitudinal energy response shows clear difference for photons and neutrons.
- Neutron energy resolution is (worse than the 1st design, but) still better than physics requirement.
- Good photon energy resolution.
- \rightarrow Aiming these plots to be included in the ECCE proposal.

Summary

- The first design of ZDC was implemented in May.
 - Performance against single neutrons and photons is studied by simulation.
 - Energy resolution is sufficient, but position resolution is not good.
 - Too expensive
- The second design of ZDC is ready.
 - Reduced thickness of EM calorimeter parts.
 - Performance is estimated as still fine.
- Next steps for the ZDC design:
 - Further performance study
 - Multiple particles, further optimization for the cost reduction...
 - Check/Study of radiation hardness.
 - Simulation study is done by V. Baturin (ODU)
 - Irradiation test at RANS
 - Readout system

Reconstructed Energy

- Energy reconstruction for 10 GeV and 200 GeV neutrons, using the average value from the fits.
 - Still see the double peak, with bias in silicon layers

Energy dependent factors

- Introduce energy dependence to the factors for silicon layers.
 - W/SI: Average * (1-0.008*(E_{SI}-500)/1000)
 - Pb/SI: Average * (1+0.04*(E_{SI}-50)/100)

Made-up slopes by eye. Optimisation is needed in future.

Some details... (more on backup)

- W/SI energy reconstruction
 - $E_{W/SI Reco} = E_{W/SI Rol, raw} \times 82.7$
 - Scale factor 82.7 is obtained from direct shots of photons on W/SI layers
- ♦ W/SI Rol
 - Rol (9cm x 9cm) takes ~95% of energy for 1 Crystal setup, but 70~90% for 2 Crystals setup.

events 140

120

100

Extraction of the scale factor

W/SI layers (No crystal)

Shot 10 - 40 GeV photons directly on

Events with $E_{Abs. (W+PET)} + E_{SI} > 99\%$

10 GeV photons

20 GeV photons

40 GeV photons

of beam energy are analysed.

Impact of resolution of Crystal

- The current setting includes:
 - No readout system
 - Resolution of crystal is assumed as ^{2.5%}/_{√E} + 1%.
 ← Based on CMS and PANDA: ~20 cm crystals

$$\rightarrow$$
 Compared to $\frac{5\%}{\sqrt{E}} + 1\%$

Doubled crystal resolution gives:

- Less impact on 1 Crystal than 2 Crystals
- In any case, the impact is not large.
 - 300 MeV: still less than 0.2.
 - 20 GeV: difference is minor.

1 Crystal: 0.037 \rightarrow 0.038,

2 Crystals: 0.018 \rightarrow 0.022

80

60

20

0.2

0.4

0.6

0.8

1

1 Crystal setup

20

10

0.2

0.4

0.6

0.8

1.2

1.4

E_{reco} / E_y

1

1.4

1.2

Forward detectors

