Erosion of N = 28 shell gap: shape coexistence and monopole transitions in the vicinity of $^{44}\mathrm{S}$

M. Kimura, Y. Suzuki and W. Horiuchi

Y. Suzuki and MK, PRC104, 024327 (2021)

Y. Suzuki W. Horiuchi and MK, to be appear on arXiv tomorrow (19th Jan)

- 1. Introduction
- 2. Numerical method
- 3. Results & Discussion
 - Shape coexistence in N=28 isotones
 - Nuclear shape and erosion of N=28 shell closure
 - Monopole transition as a probe for shape coexistence
- 4. Summary & Perspective

Ro

- O N=28 is the smallest magic number created by the spin-orbit splitting
 ⇒ Quenching of N=28 shell gap leads to the degeneracy of p- and f-wave
 ⇒ Quadrupole correlations between valence neutrons
- O Mg, Si and S (Z=12,14 and 16) have proton half-filling of sd-shell ⇒ Quadrupole correlations between protons and neutrons
- ⇒ Shape coexistence: various deformed shapes coexist at small energies

Onset of the ground state deformation is well known

- Reduction of 2⁺ state energy
- \circ Increase of B(E2)

e.g., S. Takeuchi, et al., PRL109, 1 (2012). H. Scheit, et al., 77, 3967 (1996)

However, the deformation of non-yrast states (shape coexistence) is not known well

We focus on

- 1. Shapes coexistence in N=28 isotones; ^{40}Mg , ^{42}Si and ^{44}S
- 2. Relationship between nuclear shape and the erosion of N=28 shell closure
- 3. Monopole transition as a probe for shape coexistence

Numerical Method: Antisymmetrized Molecular Dynamics (AMD)

To describe various deformed states, we have employed AMD framework

O Hamiltonian Gogny D1S density functional J. F. Berger et al., CPC 63, 365 (1991)

$$\hat{H} = \sum_{i}^{A} \hat{t}_{i} - \hat{t}_{c.m.} + \sum_{i < j}^{A} \hat{v}_{\text{GognyD1S}}(r_{ij}) + \sum_{i < j}^{Z} \hat{v}_{\text{Coulomb}}(r_{ij})$$

O Model wave function Antisymmetrized product of nucleon wave packets

$$\Psi^{\pi} = \frac{1 + \pi \hat{P}_{r}}{2} \mathcal{A}\{\varphi_{1}, \varphi_{2}, ..., \varphi_{A}\}, \quad \varphi_{i}(\boldsymbol{r}) = \exp\left\{-\boldsymbol{\nu}(\boldsymbol{r} - \boldsymbol{Z}_{i})^{2}\right\} \cdot (\boldsymbol{a}_{i} |\uparrow\rangle + \boldsymbol{b}_{i} |\uparrow\rangle)$$

O Energy variation with constraint

Model parameters (nucleon position and momenta, spins) are determined to minimize the energy with the constraint on the nuclear shape

Numerical Method: Antisymmetrized Molecular Dynamics (AMD)

We calculate the energy surface as function of the quadrupole deformation parameters of nuclear shape

 $E(\beta,\gamma) = \frac{\langle P_{MK}^J \Phi^{\pi}(\beta,\gamma) | H | P_{MK}^J \Phi^{\pi}(\beta,\gamma) \rangle}{\langle P_{MK}^J \Phi^{\pi}(\beta,\gamma) | P_{MK}^J \Phi^{\pi}(\beta,\gamma) \rangle}.$

 β : magnitude of the deformation γ : type of deformation (prolate, oblate, triaxial)

The energy surface tells us which shape is favored

e.g., ⁴⁰Mg has the energy minimum at prolate shape it also has local energy minimum at oblate shape

Numerical Method: Antisymmetrized Molecular Dynamics (AMD)

Mixing of different shapes (generator coordinate method; GCM)

$$\Psi_{M\alpha}^{J\pi} = \sum_{iK} g_{iK\alpha} P_{MK}^{J} \Phi^{\pi}(\beta_i, \gamma_i),$$
amplitude wave function with definite shape

The wave functions with various shapes are superposed ⇒ Shape fluctuation
 The amplitude and eigen-energy are obtained by diagonalizing Hamiltonian

The GCM amplitude tells us equilibrium nuclear shape and fluctuation around it

$$f(\beta,\gamma) = \frac{\langle \Psi_{M\alpha}^{J\pi} | P_{MK}^J \Phi^{\pi}(\beta,\gamma) \rangle}{\sqrt{\langle P_{MK}^J \Phi^{\pi}(\beta,\gamma) | P_{MK}^J \Phi^{\pi}(\beta,\gamma) \rangle}}.$$

e.g., ⁴⁰Mg has prolately-deformed ground state, and oblately-deformed 2nd 0⁺ state.

⁴⁰Mg exhibits the coexistence of

- Prolate deformed ground band
- Oblate deformed excited band
- ⁴⁰Mg has the energy minimum at <u>prolate shape</u> and a local minimum at <u>oblate shape</u>
- GCM amplitude is localized in the prolate and oblate deformed regions
- Small fluctuation of GCM amp.

Coexistence of rigid rotors with different shapes

⁴²Si exhibits the coexistence of

- Oblate deformed ground band
- A spherical state

 \bigcirc ⁴²Si has the energy minimum at <u>oblate shape</u>

- GCM amplitude is localized in the oblate deformed and spherical regions
- Small fluctuation of GCM amp.

Coexistence of a rigid rotor and a spherical state

⁴⁴S exhibits "large amplitude collective motion"

 \bigcirc ⁴⁴Si has <u>flat energy surface against γ deformation</u>

○ GCM amplitude has broad and non-localized distribution ⇒ Large shape fluctuation

 \bigcirc Both the ground and 2nd 0⁺ have 0² no shape. Their shapes are fluctuating

⁴⁴S Large amplitude collective motion

Collective motion beyond small amplitude approximation (RPA)

.60

0.2 β 0.4

⁴⁰Mg

0

In comparison

⁴⁰Mg (⁴²Si): Rigid rotors

- Deep energy minimum
- GCM amp are localized

⇒ Definite shape with small fluctuation

⁴⁴S: Large amplitude collective motion

Flat energy surface
 Non-localized GCM

⇒ Large Amp. Coll. Motion

deep prolate minium

Summary for "shape coexistence in N=28 isotones"

⁴⁰Mg: Rigid shape

 $|0^+_1\rangle$ Prolate rigid rotor $|0^+_2\rangle$ Oblate rigid rotor

⁴²Si: Rigid shape

 $|0^+_1\rangle$ Oblate rigid rotor $|0^+_2\rangle$ Spherical state

⁴⁴S: No shape

 $|0^+_1\rangle$ Large amplitude $|0^+_2\rangle$ collective motion

 $N{=}28$ isotones manifest different pattern of shape coexistence

In the next part I will discuss

- Relationship between nuclear shape and single-particle orbits
- Relationship between nuclear shape and erosion of N=28 shell closure

Nuclear shape and structure of Fermi surface are closely related

⁴⁰Mg

- N=28 shell gap is considerably reduced (less than 2 MeV at spherical shape)
 ⇒ An intruder orbit from p_{3/2} quickly comes down
 - A new shell gap N=28 is created in prolately-deformed region
 - ⇒ Prolately-deformed ground state

Note that N=28 shell closure is explicitly broken by the inversion of neutron orbits

Nuclear shape and structure of Fermi surface are closely related

⁴⁰Mg

- N=28 shell gap is considerably reduced (less than 2 MeV at spherical shape)
 ⇒ An intruder orbit from p_{3/2} quickly comes down
 - A new shell gap N=28 is created in prolately-deformed region
 - ⇒ Prolately-deformed ground state
- Large shell gap (Z=14, N=28)
 is also maintained in oblate region
 ⇒ Oblately-deformed state appears
 - as the 2nd 0+ state

Nuclear shape and structure of Fermi surface are closely related

⁴²Si

- Protons disfavors prolate deformation
- N=28 shell gap is larger than ⁴⁰Mg
 ⇒ Prolately-deformed N=28 shell gap is not large enough
- Large shell gap (Z=14, N=28) in oblately-deformed region
 - ⇒ Oblately-deformed ground state
 - ⇒ Spherical 2nd 0⁺ state

Nuclear shape and structure of Fermi surface are closely related

⁴²Si

Note that N=28 shell closure is also lost in the oblate deformed ground state of 42 Si, although there is no inversion of the neutron orbits.

Due to the deformation and weak-binding, the valence orbits with $\Omega = 1/2$ and 3/2 are the mixture of the f- and p-waves.

e.g., I. Hamamoto, PRC 93, 054328 (2016).

Because of this mixing, valence neutrons partially occupy p-wave, which breaks the N=28 shell closure without level inversion.

Summary for "nuclear shape and erosion of N=28 shell closure"

○ Shape of each nucleus can be roughly explained from (shell gap, size of shell gap, …)

\bigcirc Nuclear shape is closely related to how the N=2

- ⁴⁰Mg has prolate-deformed ground state
 ⇒ The N=28 shell closure is explicitly lost with
 ⁴²Si has oblate-deformed ground state
 - \Rightarrow The N=28 shell closure is implicitly lost with Mg^{1}

- \bigcirc However, these differences do not affect the occupation number of p-wave
 - Number of neutrons in p-wave : ^{40}Mg 2.0, $^{42}\text{Si}\,$ 2.1 $^{44}\text{S}\,$ 1.7 (these should be zero for N=28 shell closure)
 - \Rightarrow occupation number is not a good probe
 - ⇒ Monopole transition strengths as an alternative probe for nuclear shape

We propose the monopole transition as a probe for shape coexistence

Monopole transition strengths are different in order of magnitudes

⇒ This reflects the shape and structure of individual nuclei

$$\mathcal{M}_{E0} = \sum_{i=1}^{A} r_i^2 \frac{1+\tau_z}{2}, \quad \mathcal{M}_{IS0} = \sum_{i=1}^{A} r_i^2,$$

Relationship between shape coexistence and monopole transition

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

 \bigcirc Let $|A\rangle$ and $|B\rangle$ are the state vectors with different nuclear shape. And the ground and 2nd 0⁺ states are described by their linear combinations

 \bigcirc The monopole transition matrix between the ground and 2nd 0⁺ states is given as

wave functions

$$|0_{1}^{+}\rangle = a |A\rangle + b |B\rangle,$$

$$|0_{2}^{+}\rangle = -b |A\rangle + a |B\rangle,$$

monopole transition matrix

$$\langle 0_{2}^{+} | \mathcal{M} | 0_{1}^{+} \rangle = ab \{ \langle B | \mathcal{M} | B \rangle - \langle A | \mathcal{M} | A \rangle \}$$

$$+ (a^{2} - b^{2}) \langle B | \mathcal{M} | A \rangle$$

$$\mathcal{M}_{E0} = \sum_{i=1}^{A} r_{i}^{2} \frac{1 + \tau_{z}}{2}, \qquad \mathcal{M}_{IS0} = \sum_{i=1}^{A} r_{i}^{2},$$

 \bigcirc The first term becomes large when the mixing of two states is large $(a \approx b \approx 1/\sqrt{2})$ and the radii of $|A\rangle$ and $|B\rangle$ are different

 \bigcirc The second term vanishes when the particle-hole configurations of $|A\rangle$ and $|B\rangle$ differ by more than 2p2h, because \mathcal{M} is a one-body operator

Monopole transition is strongly hindered in $^{40}Mg~(B(IS0)\sim 0~Wu)$

Coexistence of prolate and oblate shapes

$$A\rangle = |\text{prolate}\rangle, |B\rangle = |\text{oblate}\rangle, a = 1, b = 0$$

 $|0_{1}^{+}\rangle = a |A\rangle + b |B\rangle = |\text{prolate}\rangle$ $|0_{2}^{+}\rangle = -b |A\rangle + a |B\rangle = |\text{oblate}\rangle$

Monopole matrix element

 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = ab \left\{ \langle B | \mathcal{M} | B \rangle - \langle A | \mathcal{M} | A \rangle \right\} + (a^2 - b^2) \langle B | \mathcal{M} | A \rangle = \langle \text{oblate} | \mathcal{M} | \text{prolate} \rangle.$

This matrix element vanishes due to the following reasons

Monopole transition is strongly hindered in $^{40}Mg~(B(IS0)\sim 0~Wu)$

Monopole matrix element for ⁴⁰Mg $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \langle \text{oblate} | \mathcal{M} | \text{prolate} \rangle$.

Single-particle configurations of eight valence neutrons [Here Ω denotes j_z of neutron orbit]

 $|\text{prolate}\rangle = |\Omega = 1/2\rangle^2 |3/2\rangle^2 |5/2\rangle^2 |1/2\rangle^2$ intruder

 $|\text{oblate}\rangle = |\Omega = 1/2\rangle^2 |3/2\rangle^2 |5/2\rangle^2 |7/2\rangle^2$

 $|prolate\rangle$ and $|oblate\rangle$ are different by 2p2h

⇒ forbidden transition

Monopole transition is strongly enhanced in $^{42}Si~(B(IS0)\sim 2~Wu)$

Coexistence of oblate and spherical shapes

$$A\rangle = |\text{oblate}\rangle, |B\rangle = |\text{spherical}\rangle, a = 1, b = 0$$

 $|0_1^+\rangle = a |A\rangle + b |B\rangle = |\text{oblate}\rangle$ $|0_2^+\rangle = -b |A\rangle + a |B\rangle = |\text{spherical}\rangle$

Monopole matrix element

 $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = ab \left\{ \langle B | \mathcal{M} | B \rangle - \langle A | \mathcal{M} | A \rangle \right\} + (a^2 - b^2) \langle B | \mathcal{M} | A \rangle = \langle \text{spherical} | \mathcal{M} | \text{oblate} \rangle$

This matrix element becomes large because …

Monopole transition is strongly enhanced in $^{42}\mathrm{Si}~(\mathrm{B}(\mathrm{IS0})\sim 2~\mathrm{Wu})$

Monopole matrix element for ⁴²Si $\langle 0_2^+ | \mathcal{M} | 0_1^+ \rangle = \langle \text{spherical} | \mathcal{M} | \text{oblate} \rangle$

Single-particle configurations of eight valence neutrons [Here Ω denotes j_z of neutron orbit]

 $|\text{oblate}\rangle = |\Omega = 1/2\rangle^2 |3/2\rangle^2 |5/2\rangle^2 |7/2\rangle^2$ $|\text{spherical}\rangle = |\Omega = 1/2\rangle^2 |3/2\rangle^2 |5/2\rangle^2 |7/2\rangle^2$

|oblate> and |spherical> belong the same set of the single-particle orbits and smoothly transform as function of deformation

⇒ allowed transition, enhanced

Monopole transition is enhanced in ⁴⁴S (B(IS0) \sim 0.4 Wu)

Large amplitude collective motion

$$|A\rangle = |\text{prolate}\rangle, |B\rangle = |\text{oblate}\rangle, a = b = 1/\sqrt{2}$$

$$|0_{1}^{+}\rangle = a |A\rangle + b |B\rangle = 1/\sqrt{2} (|\text{prolate}\rangle + |\text{oblate}\rangle) |0_{2}^{+}\rangle = -b |A\rangle + a |B\rangle = 1/\sqrt{2} (|\text{prolate}\rangle - |\text{oblate}\rangle)$$

Monopole matrix element

$$\begin{split} \langle 0_{2}^{+} | \mathcal{M} | 0_{1}^{+} \rangle = &ab \left\{ \langle B | \mathcal{M} | B \rangle - \langle A | \mathcal{M} | A \rangle \right\} + (a^{2} - b^{2}) \left\langle B | \mathcal{M} | A \right\rangle \\ = &\frac{1}{2} \left\{ \frac{\langle \text{oblate} | \mathcal{M} | \text{oblate} \rangle - \langle \text{prolate} | \mathcal{M} | \text{prolate} \rangle \right\} \sim 0.4 \text{ Wu} \\ \hline \text{Proportional to the size difference of prolate and oblate shapes} \end{split}$$

This matrix can be enhanced due to the different radii of prolate and oblate shapes

Summary: Erosion of N=28 shell closure; shape coexistence & monopole transition

⁴⁰Mg: Rigid shape

 $|0_1^+\rangle$ Prolate rigid rotor $|0_2^+\rangle$ Oblate rigid rotor

Erosion of N=28 closure with the inversion of neutron single-particle orbit

⇒ Forbidden monopole transition

⁴²Si: Rigid shape

 $|0_1^+\rangle$ Oblate rigid rotor $|0_2^+\rangle$ Spherical state

Erosion of N=28 closure without the inversion of neutron single-particle orbit ⁴⁴S: No shape

 $|0_1^+\rangle$ Large amplitude $|0_2^+\rangle$ collective motion

Superposition of shapes with different radii

⇒ Enhanced monopole strength

Summary & Perspectives

Summary

Quenching of N=28 shell gap induces the interesting features of N=28 isotones

- Different pattern in shape coexistence depending on proton number
- Different pattern in the erosion of N=28 shell closure
- There differences are clearly reflected to the monopole transition strengths
 ⇒ Candidate of a promising probe for shape coexistence & erosion of shell closure

Especially, ⁴⁴S is a very interesting research target as it exhibits "large amplitude collective motion", which is beyond the ordinarily collective motion described by RPA

The measurement of the monopole transition will provide us deeper understanding of this unique collective motion

Perspective

O Model and interaction dependence of ⁴⁴S properties must be investigated

○ Search for other experimental probes for the large amplitude collective motion, e.g., neutron removal and transfer reactions, electric transitions and moments, …