

Requirements of detector for SHARAQ

Tomohiro Uesaka CNS, University of Tokyo

NS

Required Resolutions

Energy resolution

 $\Delta E \sim 500 \text{keV}$ for A=12, E/A=300MeV particle 0.5MeV/(300 × 12)MeV = 1.3 × 10⁻⁴

 \rightarrow corresponds to momentum resolution of p/ Δ p ~15000

Angular resolution

momentum transfer resolution crucial in experiments with heavy ion beams, where momentum of beam particle is huge ex. ¹²N, 300MeV/A 9GeV/c

CRITERION:
$$\Delta q < 0.1 \text{ fm}^{-1}$$

$$\Delta q \sim \text{p(beam)} \times \Delta \theta \longrightarrow \Delta \theta < 2 \text{ mrad}$$

$$\Delta \theta = 1 \text{ mrad}$$

SHARAQ Spectrometer

Maximum rigidity 6.8 Tm

Momentum resolution

 $\mathrm{d}p/p = 1/14700$

Angular resolution

~ 1 mrad

Momentum acceptance

 $\pm 1\%$

Angular acceptance

~ 5 msr

1st order matrix & Req. for FP detectors

	χ	heta	У	ϕ	t	δ
1	-0.3974	-0.0000	0.0000	0.0000	0.0000	-5.8582
	-0.7727	-2.5164	0.0000	0.0000	0.0000	0.6608
	0.0000	0.0000	-0.0000	-2.3039	0.0000	0.0000
	0.0000	0.0000	0.4340	-0.1971	0.0000	0.0000
	-0.2948	-0.9073	0.0000	0.0000	1.0000	-0.0279
1	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000

Small horizontal magnification of 0.4

 \rightarrow Δx of FP detectors should be < 0.4 mm

(image size of 1 mm is assumed)

Angular magnification in horizontal plane of 2.5

CRDC is being made under UT-GANIL collaboration Michimasa's talk

requirement for Δy is more or less relaxed, $\sim 1-2$ mm.

High-resolution beamline for SHARAQ

(lateral) dispersion matching for high momentum resolution angular dispersion matching for high angular resolution

Dispersion matched transport

In the dispersion matched mode, trajectories at F3 and before the target are measured.

T. Kawabata

Achromatic Transport

T. Kawabata

In the achromatic mode, trajectories at F6 are needed to be measured for momentum tagging.

Measurements of beam trajectory

Requirements for beam-line detectors

should determine the beam trajectory with

$$\Delta x \sim 0.5 \text{ mm}$$

$$\Delta\theta$$
 < 1 mrad

should not spoil the energy/angular resolutions

$$\Delta E < 0.5 \text{ MeV}$$

$$\Delta\theta$$
 < 1 mrad

Z < 10: multiple scattering limits the detector thickness.

$$x/X_0 \sim 10^{-4}$$

• should work at $\sim 10^6$ particle/sec

Low-pressure MWDC can be the solution.

works at a higher beam rate?

Target for high-resolution measurements

In many cases, target thickness is most critical.
ex. charge exchange reaction:
energy loss difference between projectile and ejectile.

For a better use of SHARAQ,
we need a "next-generation TARGET system" such as
an active target, or a multi-layered target
with a sensitivity to reaction point.

NS

Summary

- The high-resolution SHARAQ spectrometer
 is being constructed at RI beam factory
 by University of Tokyo, in collaboration with RIKEN.
- Demands for FP and beam-line detectors are presented $\Delta x < 0.5 \ mm$

 $\Delta\theta$ < 1 mrad

- → Michimasa's and Saito's talks
- F3 detector: high rate (>MHz) need frgeturther development
- Active