RIBF Detector Workshop 08

Tetsuya Ohnishi BigRIPS Team RIKEN Nishina Center Collaborators

BigRIPS Team: T.Kubo, K. Kusaka, K. Yoshida, A. Yoshida, M. Ohtake, N. Fukuda, H. Takeda, N. Aoi, H. Suzuki, Y. Mizoi

H. Kumagai, T. Suda, H. Otsu, Y. Kondo,D. Kameda, Y. Gono, H. Watanabe, Y. Yano: RIKENT. Nakao: The University of Tokyo

K. Kimura: Nagasaki Institute of Apply Science

A. Ozawa: Tsukuba University

T. Suzuki, T. Yamaguchi: Saitama University

•Requirements for $\pm 3\sigma$ separation in A/Q, Z, A

BigRIPSPos res. $\sigma < 0.5 \text{ mm}$
Timing res. $< 64 \text{ ps} (\sigma)$
 $\Delta E resolution \sigma: 0.66 %
E resolution <math>\sigma: 0.12 \%$ • Other requirements
 \triangleright Large effective area240 × 150 mm²
 $\sim 10^6 \text{ Hz}$

DL-PPAC for **BigRIPS**

DL-PPAC: <u>Delay Line Parallel Plate Avalanche Counter</u>

H. Kumagai et al., Nucl. Instr. and Meth. A470(2001)562.

DL-PPAC in RIPS : 10⁶Hz

Gas: C_3F_8 10~30 Torr HV: 800 ~1800 V Anode/Cathode: 2/4 μ m Mylar Anode-Cathode:4mm Window:

12 μ m Al-Mylar Effective area: 240 × 150 mm²

To avoid the effect of δ -ray, we set the double layer. High efficiency

Position Resolution

U+Be 7mm B \rho 01= 7.438 Tm Controlled Pressure 11.0 Torr

Operating bias F3-1 870V F3-2 890V F5-1 890V F5-2 890V F7-1 880V F7-2 880V

Z dependence of position resolution

For light nuclei: Fine tuning of gas pressure and bias σ [mm] ⁸B,⁷Be: 0.51mm, ¹²C: 0.38 mm@300MeV,GSI

Z dependence of tracking efficiency U+Be 7mm, $B \rho 01=7.438$ Tm Controlled Pressure 11.0 Torr

Operating bias F3-1 870V, F3-2 890V, F5-1 890V, F5-2 890V F7-1 880V, F7-2 880V

Z information: F7 Si detector

Efficiency = Event(Si,X,Y)/Event(Si)

Efficiency of 1 plane at F3PPAC Z>30 Efficiency >95%

ΔE detector(Si, IC)

Si:

Tilted-Electrodes-Gas-Ionization-Chamber

K. Kimura et al., Nucl. Instr. and Meth. A538(2005)608

Setting U + Be 7mm, B ρ 01 = 7.215 Tm PPAC: F3,F5,F7 Plastic: F3, F7 Si: F7 50×50mm² 325 μ m ×2 TEGIC: F7 ϕ 200 mm P10 425mm at 760 Torr Electrodes(anode/cathode) 4 μ m × 25 Mylar Distance(anode-cathode) 2cm Detector Window 150 μ m Kapton F5x: ±2mm = Δ P/P ±0.06% gate

Timing detector(Plastic)

Plastic BC-420+H1949(current booster)

Run120 F3, F7 Plastic U86+ 345MeV/u + Be 2 mm B *p* 34 = 7.239 Tm F3Pla – F7Pla : 46.978 m Calc TOF = 237.169ns Straggling inside target: σ 28.73ps Fitting 52.17 ps(σ) $Res(Pla) = 30.8 ps(\sigma)$

Required Timing res. 64 ps (σ)

Isommer γ detector

Confirmation of PID Ge detector

 $1 \sim 2 \mu$ s from prompt

Timing gate

Energy gate

Two clover-type (90 × 90 × 76mm3) 50mm off beam center

Photo peak efficiency(add-back) 3.5%@1MeV

Z=38, A/Q = 2.55

Z=35, A/Q = 2.51

Limit of A/Q resolution (Detector)

ToF σ :0.013% B ρ =7.4 Tm γ =1.36

$$\left\{ \frac{\Delta \left(A / Q \right)}{\left(A / Q \right)} \right\}^{2} = \left\{ \frac{\Delta (B\rho)}{(B\rho)} \right\}^{2} + \gamma^{4} \left(\frac{\Delta \beta}{\beta} \right)^{2}$$

 $=(0.016)^{2}+3.42(0.013)^{2}$

Summary

Beam line detectors for BigRIPS

- 1) \pm 1.8 σ separation in Z, A/Q
- 2) Identification of A: 2D plot E/ β^2 vs A/Q
- 3) \pm 2.6 σ separation in Z by TEGIC

Future

- Development of Timing detector Timing resolution, Radiation hardness
- Higher order correction for optical matrix
- More Development of ΔE , E detectors for High rate
- Development of detector, amplifier, and circuits for E