Si Micro Pixel Detector

Atsushi Taketani RIKEN Nishina Center RIKEN Brookhaven Research Center

1. Pixel Detector at RHIC experiment

2. Pixel Detector for RIBF experiment

RHICでの物理からの要求

荷電粒子総数 ~ 2000 この中から Charm quark bottom quark を見つけ る。

Feature of Silicon Detector

- High dE/dx (~ 2MeV /(g/cm^2))
 - Solid state detector comparing to gas chamber -> thin detector
- Low e-h pair creation energy
 3.6 eV instead of 13.6 eV for gas chamber
- Available Technology
 - Small and precise
 - Huge number of read out channel
- But no intrinsic amplification
 - Required low noise electronics

Required Specification

- Collision Rate ~ 10MHz -> Timing Resolution < 100nsec
- Trigger Rate 5KHz ~ 10KHz
- Occupancy < 1% for pixel detector
- 50 * 425 micron • Pixel size
- Tracking Resolution 50micron for displacement
- High precision at mechanical construction ~ 25 micron for internal
- Material Budget ~ 1% of radiation length 荷電粒子の多重散乱、ガンマ線による電子ー陽電子対発 生をふせぐ

Full detector shape

 Inner 2 barrel will be equipped with silicon Pixel detector

Current baseline for layer 1&2 position -

Current pixel ladder baseline -

Current CAD model has sensors in neighboring ladders aligned to their ideal edge location – no allowance for positioning error. Currently RIKEN proposes 10. micron sensor positioning tolerance, HYTEC proposes 25. – 50. microns positioning tolerance ladder to ladder.

Specification

VTX	Layer	R1		R2	R3	R4
Geometrical dimensions	R (cm)	2.5		5	10	14
	∆z (cm)	21.8		21.8	31.8	38.2
	Area (cm ²)	280		560	1240	1600
Channel count	Sensor size $R \times z$ (cm ²)	1.28 × 1.36 (256 × 32 pixels)		$3.43 \times 6.36 \\ (384 \times 2 \text{ strips})$		
	Channel size	$50\times425~\mu m^2$		80 μ m \times 3 cm (effective 80 \times 1000 μ m ²)		
	Sensors/ladder	2 × 8		5	6	
	Ladders	10		20	18	26
	Sensors	160		320	90	144
	Readout chips	160		320	1080	1728
	Readout channels	1,310,720	2	,621,440	138,240	221,184
Radiation length (X/X0)	Sensor	0.2%		0.5 %		
	Readout	0.16%		0.8 %		
	Bus	0.14%				
	Ladder & cooling	0.7%		0.7 %		
	Total	1.2%		2.0 %		

- **ピクセルセンサー** p-in-n シリコンピクセルセンサー
- 厚さ200µm (最小電離粒子:15000e⁻)
- 32 x 256 (x4) ピクセル
- ピクセルの大きさ
 - 50 x 425µm²
 - Intrinsic Resolution = 50 / $\sqrt{12}$ = 14µm
 - Diffusion + 多重散乱 ~ 10µm
- 有感面積 12.8 x 13.6mm²
- 空乏化電圧 ~8V

読み出しチップ

Readout chip probing

Typical results

Class II All functions are OK, but defect pixels > 1%

Class III Not working with function

Bump bonding

Bump bond to silicon pixel sensor

Pixel detector module

- Sensor module consists of 4 ALICE Pixel readout chips Bump-bonded to silicon sensor
- One readout unit, half stave, made from two sensor modules
- Half stave is mounted on the support structure
- Pixel BUS to bring data out and send control signal in to the readout chip is mounted on the half stave
- Each detector module is built of two half staves, read out on the barrel ends

Bus structure

- 5 layers structure
- GND, Power and 3 signal lines

Final configuration

Signal-1 3 µm Cu

Signal-2 3 µm Cu

Signal-3 3 µm Cu

Power 50 μm Al

GND 50 µm Al

Signal 1; (for Surface Mount Device) Signal-1, Signal-2, and signal-3 are connected with through hole

Signal 2; (Vertical line) line connected with

pixel chip with wire bonding

Signal 3; (Horizontal line) send signal to Pilot Module connected with vertical line with through hole

Signal lines; 60 μm pitch Material Budget; Total ~ 0.26 %

Bus

Using 3 micron thick Cu as signal patterns and 50 micron Al for GND/Power line.

Cu Pattern and through hole are manufactured industry standard technology. ->

Alignment

•Relative position between jigs is determined by linear bush and pin at $<5\mu m$ accuracy in order to assemble stave at $<25\mu$ m precision.

• Jigs have a flexibility for modification of the component.

Linear bush:

structure

Linear ball bearing •Detailed and quantitative procedures to keep good uniformity and reproducibility inside in the shell

corresponded to each sensor

Gluing

1.Set the jig on the glue dispenser robot
2.Set the C/C support and on the jig
3.Dispense the glue on the support
4.Glue the sensor and support with micrometer to control the thickness of glue
5.Take out the jig

Dispenser robot

by micrometer Sensors have been chucking to fix until glue is cured.

Stopper controlled

Also, assembly procedure for bus is as same as the procedure for sensor.

Jigs have been delivered on 24 March

Assembling

1.5cmハーフラダー • 1.5cmハーフラダーが完成した。

Pixel Readout Overview

Chain Test at Stony Brook in this week

Pixel Ladder

SPIRO

2. Cosmic-ray Experiment

Test Results

- DAQ system was operated successfully.
- Clear track of cosmic-ray was detected for 50 events.

Plan

- Finalized pre-production version of ladder soon
- Start production ladder in late spring/ early summer 2008
- Production ladder finish : fall
- Start to assembly into whole structure : fall
- Install into PHENIX : Summer 2008
- Start experiment with pixel part : Winter 2008

RIBF Experiment

- 大津さんの話とこのWork Shopでの話し
- Rate 10⁶ Hz/cm²
- Dynamic Range 2500
- Low material $t/RL = 10^{-4}$

Rate

- Shaping time ~ 30nsec -> 10MHz / pixel Trigger rate ~ 20KHz
- -> Optimize pixel size 50*500 μm² is too small for rate Larger pixel size -> Easy to develop readout Minimize total number of readout channel

Dynamic range > 2500

- Current pixel detector is threshold type readout.
- Noise may be small problem at preamp.
 -> Increase noise by detector
 Capacitance ∝ pixel area
- ADC readout ??
 - There are some development on going
 - How much resolution in highest range?

前置増幅器

Material budget

- Si can be thinner, but manufacture can not handle such thin sliced silicon.
- Readout electronics has some thickness.
- 100-200 μm may be OK.
- But not t/RL ~ 10⁻⁴

Summary

- Radiation-lab group has been developed Si pixel sensor for high position resolution MIP detection.
- This can be used for RIBF experiments?
- If you need position resolution and high rate capability, Si pixel /Strip may be best solution.