Physics cases of joint analysis (non-spin physics)

H. Menjo (RHICf), Nagoya Univ

Interaction study for cosmic-ray physics

Motivation:

Precise understanding of hadronic interaction at high energy is key to improve the cosmic-ray observation using air-shower technique. \rightarrow CR composition (p, CNO, Fe) measurement \rightarrow Muon deficit problem

Key items:

Leading particle production

- Diffractive collisions
- Remnant of interactions

<u>p- π interaction</u>

They can be addressed using joint analysis btw forward and central.

Physics cases

Central (STAR) - Forward (RHICf) correlation Studies of diffractive collisions \rightarrow Require no-track or large rapidity gap in STAR → Measure particles in RHICf for studying very-low mass diffractive Study of MPI modeling → Estimate number of MPIs from STAR tracks \rightarrow Measurement of beam remnant (high energy neutron) in RHICf \Box p- π collision via One-Pion exchange \rightarrow Event selection with high energy neutrons in RHICf \rightarrow Measure the multiplicity in STAR

Physics cases

- Forward (STAR-ZDC) Forward (RHICf)
 - Improvement of neutron measurement
 - Good energy resolution: 20% (\Leftrightarrow RHICf only 40%)
 - Good position resolution: $< 1 \text{mm} (\Leftrightarrow \text{ZDC only 1cm})$

- Forward (STAR-RomanPot) Forward (RHICf)
 - Detail study of single diffractive interaction
 - Measurement of ξ by RP
 - Measurement of dissociation in RHICf
 - Measurement of resonances
 - Δ resonance \rightarrow p in RP + π^0 in RHICf

Advantage of RHICf+STAR

- Higher statistics than LHCf+ATLAS \square ~100 M events are available (w/ TPC ~ 30%) \Leftrightarrow 7 M events of LHCf+ATLAS (pp, $\sqrt{s}=13$ TeV)
 - \Box Large π^0 samples
- Experience of LHCf-ATLAS joint analysis Developed method can be applied to RHICf + STAR analyses too.
- Availability of ZDC, RPs ZDC was located behind of RHICf □ RP was installed in one of the 5 Fills

Backup

Physics 3: Multi-parton interaction

Multi-parton interaction The number of multi-parton interaction $N_{MPI} = 1$ $N_{MPI} = 2$ $N_{MPI} = 3$

Energy of very forward neutron/ π^0

Large

Small

Distributions for each cases

For example, for ATLAS-LHCf, most of neutrons from OPE are in $\eta < 9.5$. Note: this generator only support for $\sqrt{s} = 900-14000$ GeV

