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Central-forward correlation and 
One pion exchange 
ideas for STAR-RHICf joint analysis 
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• Idea for analysis 

• Similar study at LHC (ATLAS-LHCf analysis)
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∼ 1 km

Detectors at ground

Fluorescence

Fluorescence  
Detector

∼ 10 km

Motivation : Air shower induced by cosmic ray
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Energetic particles 
produced in interactions 

Many pion-air 
nucleus collisions 

Strongly affects air 
shower developments

Air shower We need precise predictions of 
hadronic interactions for ultra-
high energy cosmic rays

Energetic particles 
produced in interactions 

Produced in very forward regions

Need to separate diffractive 
dissociation and others

Pion-air nucleus collisions

No colliders for pion collisions

Only low energy data are available

Proton??  
Iron nucleus?? 

Cosmic-ray  
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Importance of joint analysis of STAR/ATLAS and LHCf/RHICf

Joint analysis allow us several physics cases
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Diffractive dissociation One pion exchange 
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At LHCf/RHICf 
photons ( ) / neutrons π0

At LHCf/RHICf 
Neutrons

Others (Non-diffractive) 

Separate these processes 
using central detectors

detectors

STAR/ATLAS RHICf/LHCf

At LHCf/RHICf 
photons ( ) / neutrons π0

Virtual pion-proton collisionsEnergetic particles  
from diffractive dissociation

Multi-parton 
interaction 



Physics 1: diffractive dissociation 
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Diffractive dissociation Particles produced 
in forward regions
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detectors

STAR/ATLAS RHICf/LHCf

Detect rapidity gap using STAR/ATLAS
Example :  
Δy > − 8.0

number of particles 
in central regions :  
Small or zero 



Physics 2: One pion exchange 
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One pion exchange 

P

P

n
!∗
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STAR/ATLAS
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We need to develop a method to 
select one pion exchange… 



Physics 3: Multi-parton interaction 
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Multi-parton interaction 
The number of 
multi-parton 
interaction 
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NMPI = 2
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Energy of very 
forward neutron/ π0
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The number of charged particles in |η | < 2.5

EPOS-LHC

SIBYLL 2.3 Large 
difference 
among 
models

QGSJET II-04

Large 
neutron 
energy

Small forward 
neutron energy

Simulation (LHC, p-p ) s = 13 TeV

Large number of particles in 
central detectors ~ large NMPI

Modeling of MPI makes large difference 
for high neutron energy & high NMPI



Multi-parton interaction　
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Forward particle 
energy

Charged tracks

in central regions

Large 

Small Large 

Small

Differences in modeling 

EPOS-LHC & QGSJET II-04

PYTHIA & SIBYLL

The number of 
partons in the 
remnants decreases 
as  increasesNMPI

The parton cascades 
are considered in the 
model. 

Large correlations

Relatively small 
correlations

S. Ostapchenko et al, 
Phys. Rev. D 94 114026

The number of 
multi-parton 
interaction 

NMPI = 1

NMPI = 2

NMPI = 3



Central-forward correlation with forward neutron
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detectors

STAR/ATLAS RHICf/LHCf

Neutron at 
RHICf/LHCfNumber of charged 

particles in central 
detectors

Physics targets 
• Energetic particles from diffractive 

dissociation 
• Virtual pion-proton collisions using 

one-pion exchange 
• Multi-parton interaction

Problem : How to separate diffractive/
one-pion exchange/non-diffractive ? 

Key information to separate them :  
The number of charged particles in central detectors 


 of forward neutronspT

ATLAS-LHCf joint analysis for forward neutrons is on going…  
From next slide, I show simulation studies for joint analysis

RHICf (LHCf-Arm1)
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Note: this generator only support 
for 900-14000 GeVs =
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most of neutrons  from OPE are in . η < 9.5
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simulated by MonChER  
(arXiv: 1106.2076)
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Low High
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High

 Diffractive  Non-diffractive 
Lower energy for higher Ntrack

 One-pion exchange 

Energy

 Diffractive

The number of charged particles 
in central detectors Ntrack

Concept to separate each process
If we focus on zero degree… 
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Low High

Low

High

 Diffractive  Non-diffractive 
Lower energy for higher Ntrack

Energy

 Diffractive

The number of charged particles 
in central detectors Ntrack

Concept to separate each process
If we focus on off-axis, (  for ATLAS-LHCf)η < 9.5

Central-forward correlation 
for MPI study 

High energy neutrons 
decreases for high Ntrack

This effect depends 
on the modeling of 
MPI in each model.



Concept to separate one-pion exchange

13

Low High

Low

High

 Diffractive  Non-diffractive 
Lower energy for higher Ntrack

 One-pion exchange 

Ntrack

Energy
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Very large uncertainties in background 
estimations by models

=> Difficult to understand one-pion 
exchange contributions.
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Concept  to separate one-pion exchange
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Two peaks in true energy distributions.

=> We can select neutrons from one-pion exchange and 
non-diffractive despite very large differences in predictions. 

(if energy resolutions for neutrons is good. )

Simulation  
(LHC, p-p ) s = 13 TeV



At LHC : ATLAS-LHCf joint analysis
Analysis is on going… 
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Analysis : simple extension using Ntrack

A simple extension of LHCf/RHICf stand alone analysis works well. 

Two dimensional analysis with neutron energy and 
Ntrack

Some problems in analysis… (ATLAS-LHCf analysis)
Contaminations of kaons and lambda, and their decay products depends on process/models

Large differences in predictions for diffractive dissociation

Multi-hit, two or more particles hit in a calorimeter tower, depends on process/models

Large differences in predictions for diffractive dissociation and for neutrons around beam center

RHICf (LHCf-Arm1)



Summary  
• For comic-ray air shower, predictions of energetic particles and pion-

proton collisions in hadronic interactions are important. 

• Forward neutron analysis using central detectors and LHCf/RHICf 

detectors can measure 

• energetic particles produced in diffractive dissociation

• virtual pion-proton collisions in one pion exchange process

• Central-forward correlations for non-diffractive collisions to 

constrain the modeling of multi-parton interaction.

• I presented some idea to separate each process. 
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Back up 
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MonChER arXiv: 1106.2076
A generator for one-pion exchange process 

• https://moncher.hepforge.org

• Exchange of pion, rho, and a2 are considered. 

• Developed by R.A. Ryutin, A.E. Sobol, V.A. Petrov (Serpukhov, IHEP)

• Related references 


• “LHC as πp and ππ collider “ : Eur. Phys. J. C (2010) 65: 637–647  DOI 10.1140/epjc/
s10052-009-1202-0 


• “Total π + p cross section extracted from the leading neutron spectra at the LHC “ PHYSICAL 
REVIEW D 96, 034018 (2017)


• Only support 900-1400 GeV (LHC energy) 

• No update since 2011. No maintenance?? 
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https://moncher.hepforge.org


One pion exchange selections 

• Several cases are (partially) considered

• Using distributions in central detectors 


• Using true level information from generators 

• No differences between Non-diff. and One pion exchange


• Using Roman pot detectors 

• Simple calculation only. 

• No idea to separate single diffractive and one pion exchange with elastic -p 

collisions 

• Using hit information in two LHCf/RHICf detector 


• Hit in beam center and another hit in another calorimeter tower 

• It is difficult to select one pion exchange… 


• No clear idea to separate diffractive dissociation and one pion exchange for the moment… 

π+
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Can we separate neutrons from diffractive and one pion exchange?



fx
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [G
eV

/c
]

Tp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ev
en

ts
/b

in
s

0

50

100

150

200

250

300

350

400

Distributions for each cases

20

ev
en

ts
/b

in
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

310×

fx
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [G
eV

/c
]

Tp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
 = 510 GeVsp-p, 

 > 6.0η
neutron
Non-diff. ev

en
ts

/b
in

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

310×

fx
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 [G
eV

/c
]

Tp

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
 = 510 GeVsp-p, 

 > 6.0η
neutron
Diffraction

SIBYLL 2.3c, p-p , neutrons in s = 510 GeV η > 6.0
Distributions of forward neutrons 

One pion exchange

Note: this generator only support 
for 900-14000 GeVs =

p-p  
Neutrons in 

s = 13 TeV
η > 8.8

For example, for ATLAS-LHCf,  
most of neutrons  from OPE are in . η < 9.5

xF

pT

xF

pT
Diffractive  
Dissociation

Non- 
diffractive

simulated by MonChER  
(arXiv: 1106.2076)



Distributions for each cases
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Distributions for each cases
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