Central-forward correlation and One pion exchange

ideas for STAR-RHICf joint analysis

Ken Ohashi - Nagoya Univ., Cosmic-ray lab. - Jan 28th, 2022

Contents

- Physics motivation
- Diffractive dissociation
- One pion exchange
- Multi-parton interaction
- Idea for analysis
- Similar study at LHC (ATLAS-LHCf analysis)

Motivation : Air shower induced by cosmic ray

We need precise predictions of hadronic interactions for ultrahigh energy cosmic rays

Energetic particles produced in interactions

Produced in very forward regions
Need to separate diffractive dissociation and others

Pion-air nucleus collisions
No colliders for pion collisions Only low energy data are available

Importance of joint analysis of STAR/ATLAS and LHCf/RHICf

Joint analysis allow us several physics cases

Diffractive dissociation

One pion exchange

At LHCf/RHICf
Neutrons

Others (Non-diffractive)

photons $\left(\pi^{0}\right)$ / neutrons

Physics 1: diffractive dissociation

number of particles in central regions : Small or zero

Diffractive dissociation

$$
M_{X}^{2}=\left(p_{1}+p_{2}-p_{3}\right)^{2}
$$

Large rapidity gap $\Delta y \approx \ln \xi$
(b)

$\xi=M_{X}^{2} / s$

Particles produced in forward regions

STAR/ATLAS

Detect rapidity gap using STAR/ATLAS

Physics 2: One pion exchange

One pion exchange

Simulation (LHC, p-p $\sqrt{s}=13 \mathrm{TeV}$)

Physics 3: Multi-parton interaction

Multi-parton interaction

The number of multi-parton interaction
$N_{M P I}=1$
$N_{M P I}=2$
$N_{M P I}=3$

Energy of very forward neutron/ π^{0}

Large number of particles in central detectors \sim large $N_{M P I}$

Large

Small

Simulation (LHC, p-p $\sqrt{s}=13 \mathrm{TeV}$)

The number of charged particles in $|\eta|<2.5$
Modeling of MPI makes large difference for high neutron energy \& high $N_{M P I}$

Multi-parton interaction

S. Ostapchenko et al, Phys. Rev. D 94114026

Central-forward correlation with forward neutron

Physics targets

- Energetic particles from diffractive dissociation
- Virtual pion-proton collisions using one-pion exchange
- Multi-parton interaction

Problem : How to separate diffractive/ one-pion exchange/non-diffractive ?

Key information to separate them:
The number of charged particles in central detectors
STAR/ATLAS RHICf/LHCf

Number of charged RHICf/LHCf particles in central detectors
p_{T} of forward neutrons
ATLAS-LHCf joint analysis for forward neutrons is on going... From next slide, I show simulation studies for joint analysis

Distributions for each cases

Distributions of forward neutrons

 (arXiv: 1106.2076)

$$
\mathbf{p}-\mathbf{p} \sqrt{s}=13 \mathrm{TeV}
$$

Neutrons in $\eta>8.8$

For example, for ATLAS-LHCf, most of neutrons from OPE are in $\eta<9.5$. Note: this generator only support for $\sqrt{s}=900-14000 \mathrm{GeV}$

Concept to separate each process

If we focus on zero degree...

Concept to separate each process

If we focus on off-axis, ($\eta<9.5$ for ATLAS-LHCf)

Concept to separate one-pion exchange

Very large uncertainties in background estimations by models
=> Difficult to understand one-pion exchange contributions.

Concept to separate one-pion exchange

Two peaks in true energy distributions.

=> We can select neutrons from one-pion exchange and non-diffractive despite very large differences in predictions. (if energy resolutions for neutrons is good.)

At LHC : ATLAS-LHCf joint analysis

Analysis is on going...

Analysis : simple extension using $N_{\text {track }}$

A simple extension of LHCf/RHICf stand alone analysis works well.
Two dimensional analysis with neutron energy and $N_{\text {track }}$

RHICf (LHCf-Arm
Some problems in analysis... (ATLAS-LHCf analysis)
Contaminations of kaons and lambda, and their decay products depends on process/models
Large differences in predictions for diffractive dissociation
Multi-hit, two or more particles hit in a calorimeter tower, depends on process/models
Large differences in predictions for diffractive dissociation and for neutrons around beam center

Summary

- For comic-ray air shower, predictions of energetic particles and pionproton collisions in hadronic interactions are important.
- Forward neutron analysis using central detectors and LHCf/RHICf detectors can measure
- energetic particles produced in diffractive dissociation
- virtual pion-proton collisions in one pion exchange process
- Central-forward correlations for non-diffractive collisions to constrain the modeling of multi-parton interaction.
- I presented some idea to separate each process.

Back up

MonChER arXiv: 1106.2076

A generator for one-pion exchange process

- https://moncher.hepforge.org
- Exchange of pion, rho, and a2 are considered.
- Developed by R.A. Ryutin, A.E. Sobol, V.A. Petrov (Serpukhov, IHEP)
- Related references
-"LHC as пр and пп collider " : Eur. Phys. J. C (2010) 65: 637-647 DOI 10.1140/epjc/ s10052-009-1202-0
- "Total $\pi+p$ cross section extracted from the leading neutron spectra at the LHC " PHYSICAL REVIEW D 96, 034018 (2017)
- Only support 900-1400 GeV (LHC energy)
- No update since 2011. No maintenance??

One pion exchange selections

Can we separate neutrons from diffractive and one pion exchange?

- Several cases are (partially) considered
- Using distributions in central detectors
- Using true level information from generators
- No differences between Non-diff. and One pion exchange
- Using Roman pot detectors
- Simple calculation only.
- No idea to separate single diffractive and one pion exchange with elastic $\pi^{+}-\mathrm{p}$ collisions
- Using hit information in two LHCf/RHICf detector
- Hit in beam center and another hit in another calorimeter tower
- It is difficult to select one pion exchange...
- No clear idea to separate diffractive dissociation and one pion exchange for the moment...

Distributions for each cases

Distributions of forward neutrons

 (arXiv: 1106.2076)

$$
\mathbf{p}-\mathbf{p} \sqrt{s}=13 \mathrm{TeV}
$$

Neutrons in $\eta>8.8$

For example, for ATLAS-LHCf, most of neutrons from OPE are in $\eta<9.5$. Note: this generator only support for $\sqrt{s}=900-14000 \mathrm{GeV}$

Distributions for each cases

Distributions of forward photon

Distributions for each cases

