

J-PARCハドロン実験施設 と そこでの核子構造研究の可能性

Shin'ya Sawada 澤田 真也 KEK

(High Energy Accelerator Research Organization, Japan)

January 7, 2011

Contents

- Overview of J-PARC
- Hadron Facility
- Nucleon Structure Research with Drell-Yan
 - A series of Fermilab experiments
- New Drell-Yan Experiments
 - E906/SeaQuest and J-PARC P04
- Toward New Step of Structure Study
 - 2D to 3D, importance of the orbital angular momentum
 - Possibility of spin-related experiments at J-PARC
- R&D
 - High momentum beam line
 - Polarized target
- Possibility of the Facility
 - 40GeV? Pol. beam? Pi beams?
- Sumnmary

Neutrino Beams (to Kamioka)

50 Galva

FFF

nchrotron

Bird's eye photo in January of 2009

J-PARC Facility (KEK/JAEA)

The state of the state

South to North

Hadron Hall (Phase 1)

NP-HALL 56m(L) × 60m(W)

North Side: K1.8, K1.8BR

SKS Spectrometer

011

Q10

K1.8 & SKS

K1.8 Beam Spectrometer

D4

2010年9月28日ハドロンホール南側

Oct. 15, 2010

No. Contraction of the

- "Special" branching device for primary proton beams at the SM1.
- Thin target for seconadry beams at the SM1.

Contents

- Overview of J-PARC
- Hadron Facility
- Nucleon Structure Research with Drell-Yan
 - A series of Fermilab experiments
- New Drell-Yan Experiments
 - E906/SeaQuest and J-PARC P04
- Toward New Step of Structure Study
 - 2D to 3D, importance of the orbital angular momentum
 - Possibility of spin-related experiments at J-PARC
- R&D
 - High momentum beam line
 - Polarized target
- Possibility of the Facility
 - 40GeV? Pol. beam? Pi beams?
- Sumnmary

- 核子=3つのバレンスクォーク(?)
 - 形は?球形??"均一"???
 - 核の中の核子の形は?
 - $\begin{array}{ll} \mbox{average spacing at ρ_{nm}} & \sim 1.8 \mbox{ fm} \\ \mbox{Radius of a nucleon} & \sim 0.8 \mbox{ fm} \\ \mbox{average spacing at $3\rho_{nm}$} & \sim 1.3 \mbox{ fm} \\ \end{array}$
 - "nucleons" held apart by short range repulsion but even in ²⁰⁸Pb, half the nucleons are in the surface

Drell-Yan過程

Drell-Yan測定の例: Fermilab Experiments

- For each event measure 3-momentum of each μ
- Assume that it is a muon to get 4-momentum

Reconstruct
$$M_{\gamma}^{2}$$
, p_{T}^{γ} , p_{\parallel}^{γ}

•
$$M_{\gamma}^{2} = x_{1}x_{2}s$$
,

•
$$x_F = 2p_{||}^{\gamma}/s^{1/2} = x_1 - x_2$$

Drell-Yan過程の運動学

0.2

0.4

10

10

10

Detector acceptance chooses x_{target} (x₁) and x_{beam} (x₂).

- Fixed target: high $x_F = x_{beam} x_{target}$
- Valence Beam quarks at high-x.
- Sea Target quarks at low/intermediate-x

 $\frac{d^2\sigma}{dx_1 dx_2} = \frac{4\pi\alpha^2}{9x_1 x_2} \sum_{a}^{1} e^2 \left[\bar{q}_t(x_t)q_b(x_b) + q_t(x_t)q_b(x_b)\right]$

- While previous experiments were done at 800 GeV, E906 uses 120-GeV Main Injector beams.
 - Cross section scales as 1/s
 - 7 x that of 800 GeV beam
 - Backgrounds, primarily from J/ ψ decays scale as s
 - 7 x Luminosity for same detector rate as 800 GeV beam

50 x statistics!!

MRST

0.6

0.8

January 7, 2011

海クォークの構造:これまでの実験データ

- pQCD Gluon splitting? i.e. $\overline{d}(x) = \overline{u}(x)$
- NMC (Gottfried Sum Rule) $S_{G} = \int_{0}^{1} [(F_{2}^{p}(x) - F_{2}^{n}(x)) / x] dx$ $= \frac{1}{3} + \frac{2}{3} \int_{0}^{1} (\overline{u}_{p}(x) - \overline{d}_{p}(x)) dx$

$$= \frac{1}{3} \quad (if \ \overline{u}_p = d_p)$$

S_G = 0.235 ± 0.026

$$\int_{0} \left[\bar{d}(x) - \bar{u}(x) \right] dx \neq 0$$

- NA51 (Drell-Yan) $d > \bar{u}$ at x = 0.18
- E866 (Drell-Yan) $d(x)/\bar{u}(x)$ for $0.015 \le x \le 0.35$

January 7, 2011

Shin'ya Sawada

18

Fermilab E906/SeqQuest実験

- 目的:0.25 < x < 0.45 で dbar/ubarを測定し、より広い 範囲でのdbar/ubarとそのx依 存性を明らかにする。
- 陽子ビーム: FNAL Main
 Injector からの120GeVビーム
 - 2x10¹²/sec on target
- スペクトロメータ:既存の資産を 最大限生かしながら建設す る。
 - 日本グループはStation 3を主と して担当する。

January 7, 2011

Advantages of 120 GeV Main Injector

Main Injector

120 Ge

 7 x Luminosity for same detector rate as 800 GeV beam

50 x statistics!!

January 7, 2011

Drell-Yan Spectrometer for E-906/SeaQuest (25m long)

- Fermilab PAC approved the experiment in 2001, but experiment was not scheduled due to concerns about "proton economics"
- Stage II approval in December 2008
- Expect to start running around Thanksgiving for 2 years of data collection

Expt. Funded	Experiment Construction			Experiment Runs			Exp. Runs
2008	2009	2010		2011 Beam: lo	2012 w intensity	2013 low intensity	2014 low intensity
w/ Tevatron extension							

Apparatus available for future programs at, e.g. Fermilab, J-PARC or RHIC

significant interest from collaboration for continued program

- Fermilab E906/SeaQuest: Main Injector with 120-GeV protons
 - 2010-2013
 - Mid x region, really d-bar/u-bar < 1??</p>
- J-PARC P04: Experiment with 30 and 50-GeV protons
 - 2014-
 - Experimental apparatus mainly from E906
 - Ep = 30 GeV at the beginning
 - J/Psi physics
 - Ep = 50 GeV at the next stage with unpol beams for higher x
 - Polarized target and / or polarized beams
 - New proposal is under preparation.

Antiquarks in nucleons

- dbar/ubar at Large x using 50 GeV Protons.
- J-PARC can measure d-bar/u-bar at larger x.

 10^{12} protons per spill (3 s) 50-cm long LH_2 / LD_2 targets 60-day runs for each targets assuming 50% efficiency

- Muon pair measurement from p+p, p+d, and p+A reactions
- Drell-Yan
 - Sea quark flavor asymmetry at larger x_{target}
 - Spin-labeled structure at large x_{target}
 - Paton energy loss in cold nuclear matter
- J/Psi
 - production mechanism
 - nuclear dependence
- Open charm and others
- If polarized target \rightarrow more spin structure (P24)
- And if polarized beam \rightarrow much more spin structure (P24)

January 7, 2011

Contents

- Overview of J-PARC
- Hadron Facility
- Nucleon Structure Research with Drell-Yan
 - A series of Fermilab experiments
- New Drell-Yan Experiments
 - E906/SeaQuest and J-PARC P04
- Toward New Step of Structure Study
 - 2D to 3D, importance of the orbital angular momentum
 - Possibility of spin-related experiments at J-PARC
- R&D
 - High momentum beam line
 - Polarized target
- Possibility of the Facility
 - 40GeV? Pol. beam? Pi beams?
- Summary

"2D to 3D" and "static" to "dynamic"

X. Ji, D. Mueller, A. Radyushkin, ... M. Burkardt, ... Interpretation in impact parameter space

Proton form factors, transverse charge & current densities

Correlated quark momentum and helicity distributions in transverse space - GPDs Structure functions, quark longitudinal momentum & helicity distributions

~25% small?

- So, understanding of the orbital angular momentum is the key issue.
- Understanding of the orbital angular momentum needs not only longitudinal momentum and helicity distribution but also transverse distribution.
- Now the slogan should be "2D to 3D".
- Transverse distribution can be expressed by
 - Generalized Parton Distirubions (GPDs)
 - Form factor (transverse) + Structure Function (longitudinal) = 3D nucleon structure,
 - Transverse Momentum-dependent Distributions (TMDs)
 - Bohr-Mulders fn, Sivers fn. etc.
- Extensive theoretical investigation on this field is being done.

January 7, 2011

Nucleon Shape? (a naïve question)

Boer-Mulders Fn.(integrated over x) :

can be measured with the Drell-Yan process

 non-zero Boer-Mulders fn. → non-spherical spin dependent density

January 7, 2011

Boer-Mulders function $h_1^{\perp}(x, k_T^2)$

- angular distribution of unpolarized Drell-Yan

$$\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$$

 correlation between transverse quark spin and quark transverse momentum in an unpolarized proton

$$N(\phi) \propto h_1^{\perp q}(x_1, k_{\perp}^2) \cdot \frac{(\hat{P} \times \vec{k}_{\perp}) \cdot \vec{S}_q}{M} \cdot h_1^{\perp \overline{q}}(x_2, \overline{k}_{\perp}^2) \cdot \frac{(\hat{P} \times \vec{\overline{k}}_{\perp}) \cdot \vec{S}_{\overline{q}}}{M}$$

 $u \propto \left(\frac{h_1^{\perp}}{f_1}\right) \left(\frac{\overline{h_1}^{\perp}}{\overline{f_1}}\right)$

Spin-labeled structure can be measured even with unpolarized experiments.

- J-PARC dimuon 実験のスピン物理メニュー
 - 縦偏極 A_{LL} of Drell-Yan
 - sea-quark 偏極のフレーバー非対称性
 - 横偏極 A_N of Drell-Yan
 - Sivers関数(sin(\$-\$\phi_S\$) term)
 - transversity分布関数 & Boer-Mulders関数(sin(φ+φ_s) term)
 - 横偏極 A_{TT} of Drell-Yan
 - transversity分布関数
 - その他(30-GeV)
 - J/Ψ: Drell-Yan と同様のメニュー?
 - A_N of open charm: Sivers 関数
 - (neutron-tagged Drell-Yan)

"Leading-Twist" TMD Quark Distributions

An Example of Sivers at 120 GeV

Xiaodong Jian, Drell-Yan Workshop at Santa Fe, Oct 31- Nov 1, 2010. Needs polarized NH3 solid target.

Contents

- Overview of J-PARC
- Hadron Facility
- Nucleon Structure Research with Drell-Yan
 - A series of Fermilab experiments
- New Drell-Yan Experiments
 - E906/SeaQuest and J-PARC P04
- Toward New Step of Structure Study
 - 2D to 3D, importance of the orbital angular momentum
 - Possibility of spin-related experiments at J-PARC
- R&D
 - High momentum beam line
 - Polarized target
- Possibility of the Facility
 - 40GeV? Pol. beam? Pi beams?
- Summary

No. Contraction of the

- "Special" branching device for primary proton beams at the SM1.
- Thin target for seconadry beams at the SM1.

(C) Device R&D for proton beam branching

- Main beam: 10¹³ 10¹⁴ protons/spill
 - → Branched beam: $10^9 10^{10}$ or 10^{12} protons/spill
- Conventional method: Electrostatic septum and/or Lambertson magnet
 - Septum: similar to the one used at the slow extraction from the 50-GeV Main Ring.
 - Limited bending power
 - Magnet has an issue on radiation and heat.
- Advanced method: Bent Crystal
 - Principle was proved at a test experiment at KEK-PS.
 - Need realistic test and design
 - application for Grant-in-aid for scientific research (Kakenhi)
 - Already a part of R&D is being started.

Noruar \$ 07,, 2001101

Experimental setup

Experimental intensity of the deflected beam compared with the best fitted simulation (CATCH) for the beam divergence of $\underline{0.6 \text{ mrad}}$ and normalization factor for the d. b. intensity of $\underline{1/0.93}$.

- Crystal fabrication
 - Crystals were made by Italian and Russian collaborators so far.
 - A test to fabricate a thick (~1mm) bent silicon crystal has been started at a company in Japan.
- Radiation and heat resistant goniometer system inside the vacuum at the separation point
 - Vacuum chamber and goniometer system are being fabricated.
- Radiation hardness is to be tested.

R&D of Polarized Target

R&D for polarized solid target is underway with Kakenhi by Yuji Goto (RIKEN) and co. (@ Yamagata and KEK) Don Crabb

Contents

- Overview of J-PARC
- Hadron Facility
- Nucleon Structure Research with Drell-Yan
 - A series of Fermilab experiments
- New Drell-Yan Experiments
 - E906/SeaQuest and J-PARC P04
- Toward New Step of Structure Study
 - 2D to 3D, importance of the orbital angular momentum
 - Possibility of spin-related experiments at J-PARC
- R&D
 - High momentum beam line
 - Polarized target
- Possibility of the Facility
 - 40GeV? Pi beams? Pol. beam?
- Summary

- The design of the main ring (synchrotron) of J-PARC is 50 GeV.
- In the course of the construction, some parts of the accelerator components were redesigned and fabricated with 30 or 40 GeV, mainly due to shortage of money and R&D period.
- Upgrade to 40 and 50 GeV needs money.
- 40 GeV is relatively easier.
 - Possibility of Drell-Yan measurement at 40 GeV should be investigated seriously.
- Appealing with physics cases should be important.

■ **30GeV** protons + 2% loss copper target. Production angle of 4 degree and $(\Delta p/p)\Delta \Omega = 0.2$ msr%.

	Momentum (GeV/c)	dσ/dpdΩ (mb/sr/GeV/c)	Yield at SM1 (per 10 ¹⁴ protons)	Yield at 120m (per 10 ¹⁴ protons)
π+	5	1400	3.7E7	2.4E7
π+	10	210	1.1E7	8.9E6
π-	5	1000	2.6E7	1.7E7
π-	10	130	6.7E6	5.4E6
K+	5	130	3.3E6	1.3E5
K⁺	10	28	1.4E6	2.8E5
K⁻	5	61	1.6E6	6.4E4
K-	10	7.0	3.6E5	7.2E4
pbar	5	11	2.8E5	2.8E5
pbar	10	1.1	5.7E4	5.7E4

 Even with 30 GeV protons, enough intensity can be obtained especially for pions!
 Dartutatry 2002011 Shin'yacta@attas, Jeju

• 50GeV protons + 2% loss copper target. Production angle of 4 degree and $(\Delta p/p)\Delta \Omega = 0.2msr\%$.

	Momentum (GeV/c)	dσ/dpdΩ (mb/sr/GeV/c)	Yield at SM1 (per 10 ¹⁴ protons)	Yield at 120m (per 10 ¹⁴ protons)
π+	5	3700	9.5E7	6.2E7
π+	10	930	4.7E7	3.8E7
π-	5	3700	9.5E7	6.2E7
π-	10	700	3.6E7	2.9E7
K+	5	440	1.1E7	4.4E5
K+	10	120	6.2E6	1.2E6
K⁻	5	220	5.7E6	2.3E5
K-	10	56	2.9E6	5.8E5
pbar	5	53	1.4E6	1.4E6
pbar	10	16	8.4E5	8.4E5

To get more intensity for higher momentum beams, extraction at more forward angles can be considered.
 Dattulary 2002011 Shin'y ablan/yadaa@atdas, Jeju 46

- P24として提案→「実験と装置・施設を分けよ」→新しいプロポーザルへ。
- unpolarized \rightarrow polarized target \rightarrow polarized beam
 - polarized beam study by BNL & KEK groups
 - possible locations of partial snakes in MR

Polarized proton acceleration at J-50 GeV PS Phase 1 Experimental Area pC CNI Polarimeter 3 GeV PS Phase 2 (25Hz) **R&D** for Nuclear 3 GeV PS Transmutation Experimental Area Extracted Beam Pol. H⁻ Source Linac Polarimeter (Superconducting) rf Dipole 50 GeV PS Linac (Normal Conducting) Neutrinos to 180/400 MeV Polarimeter 30% Partial SuperKamiokande Helica/Siberian Snakes Pol. H⁻ Source LINAC BOOSTER rf Dipole AGS 200 MeV Warm Partial Polarimeter **Helical Siberian Snake AGS** Internal Polarimeter AGS pC Polarimeters **Cold Partial** Shin'ya Sawada Helical Siberian Snake

June 30, 2010

- Hadron experiments have started at J-PARC.
- Drell-Yan experiment with lower energy is being done at Fermilab with 120 GeV protons.
- Similar experiment (and nearly identical setup) with 50 GeV (i.e. larger x) has been proposed to J-PARC.
- Next generation experiments should be on orbital angular momentum or 3-dimensional measurements.
- R&D for polarized targets and high momentum beam line are underway.
- Physics cases are important for higher beam energy and polarized beam acceleration.