J-PARCにおける核子構造の物理:コメント

Shunzo Kumano

High Energy Accelerator Research Organization (KEK) Graduate University for Advanced Studies (GUAS)

> 第4回核子構造WGオーブンミーティング http://indico.riken.jp/indico/ 2011年2月14日、KEK つくば市

> > Feb. 14, 2011

Hadron physics at J-PARC

Possibilities

Approved proposals

Hadron and Nuclear Physics

- Strangeness nuclear physics (1st experiment)
 - Exotic hadrons
- Hadrons in nuclear medium
- Hard processes
- Nucleon spin

Aest project

- $(\rightarrow 50 \text{ GeV})$
- (proton polarization)
- Quark-hadron matter (heavy ion?)

Hadron Physics at J-PARC

Note: Hadron Physics

 \equiv (narrow sense) Hadron Physics + Nuclear Physics in my talk.

J-PARCにおける高エネルギーハドロン物理の「Q&A(最後に)」

- AGSの残飯整理では?
- ・構造関数の物理はHERAで終わりでは?
- ・大きいx_{Bjorken}領域の小さい構造関数を測定して意味があるか?
- ・摂動論的QCDの補正が大きく、分布関数を取り出せないのでは?
- ・世界的な研究動向は?世界の研究者が興味を持つか?
- ・次世代を担う研究者がいるか? 5-10年後にユーザがいるか?
- ・ノーベル賞を取れる様な重要な成果を出せるのか?
- ・大強度ビームの特徴を生かしているのか?
- ・ハドロン実験が基本相互作用に関して何の貢献ができるのか?

現時点(30 GeV)で可能な 研究課題例

AGSの残飯整理では?

残飯整理 → (重要な) 未解決問題の解決 AGSの測定結果で疑問視されているもの

- ・偏極pp弾性散乱の非対称度
- Color transparency

AGS以後に発展した課題の解明

- ・ハドロンのスピン構造
- ・一般化パートン分布
- ・短距離の核力
- ・パートンエネルギー損失

Spin asymmetry in pp elastic scattering

Single spin asymmetry in $p\vec{p}$ elastic: $A_n = \frac{\sigma^{\top} - \sigma^{+}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$

J-PARC 30 GeV is the same as the AGS energy. (The kinematical range is similar.)

For a possible J-PARC experiment,

 New observable should be investigated for providing a clue to pin down a possible mechanism of producing the asymmetry at large p_T.

SPIN IN PARTICLE PHYSICS

ELLIOT LEADER Imperial College. London

CAMBRIDGE

Unsolved problem in high-energy spin physics

From Spin in Particle Physics, E. Leader, Cambridge University press (2001); D. G. Crabb et al., PRL65 (1990) 3241.

Color Transparency

At large momentum transfer, a small-size hadron could freely pass through nuclear medium. (Transparent)

構造関数の物理はHERAで終わりでは? GPDの定義は次のページ 3D picture of nucleon by Generalized Parton Distributions (GPDs) (Nucleon tomography)

Nucleon

HERAの後に、なぜいまさらGPD? ・核子スピン構造の起源解明 (パートン軌道角運動量の寄与) ・非摂動論的QCDの検証と確立 ・核子の3次元描像の確立

Generalized Parton Distributions (GPDs) at lepton facilities

$$\frac{p+p'}{2}, \ \Delta = p'-p$$

Bjorken variable $x = \frac{Q^2}{2p \cdot q}$
Momentum transfer squared $t = \Delta^2$
Skewdness parameter $\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2P^+}$

GPDs are defined as correlation of off-forward matrix:

$$\int \frac{dz^{-}}{4\pi} e^{ixP^{+}z^{-}} \left\langle p' \left| \overline{\psi}(-z/2) \gamma^{+} \psi(z/2) \right| p \right\rangle \Big|_{z^{+}=0, \overline{z}_{\perp}=0} = \frac{1}{2P^{+}} \left[H(x,\xi,t)\overline{u}(p')\gamma^{+}u(p) + E(x,\xi,t)\overline{u}(p')\frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2M}u(p) \right]$$

Forward limit: PDFs $H(x,\xi,t)|_{\xi=t=0} = f(x)$

First moments: Form factors Dirac and Pauli form factors F_{1,F_2} $\int dx H(x,\xi,t) = F_1(t), \quad \int dx E(x,\xi,t) = F_2(t)$

Second moments: Angular momenta Sum rule: $J_q = \frac{1}{2} \int dx \, x \Big[H_q(x,\xi,t=0) + E_q(x,\xi,t=0) \Big], \quad J_q = \frac{1}{2} \Delta q + L_q$

GPDs in different *x* regions and GPDs at hadron facilities

 $-1 < x < \xi \quad (x + \xi < 0, x - \xi < 0) \qquad \qquad \xi < x < 1 \quad (x + \xi > 0, x - \xi > 0)$ **Quark distribution** $-\xi < x < \xi$ $(x + \xi > 0, x - \xi < 0)$ Consider a hard reaction with

Emission of quark with momentum fraction $x+\xi$ Absorption of quark with momentum fraction x- ξ

Meson-like distribution amplitude

Emission of quark with momentum fraction $x+\xi$ Emission of antiquark with momentum fraction ξ -x

Antiquark distribution

Emission of antiquark with momentum fraction ξ -x Absorption of antiquark with momentum fraction $-x-\xi$ $|s'|, |t'|, |u'| \gg M_N^2, |t| \ll M_N^2 / p$

GPDs at J-PARC: PRD 80 (2009) 074003.

Efremov-Radyushkin -Brodsky-Lepage (ERBL) region

50 GeVが望ましい 研究課題例

Applicability of perturbative QCD

Cross section = pQCD × non-pQCD (PDFs)

In order to extract the hadron-structure part, pQCD should be understood.

Drell-Yan cross section

Ref. H. Shimizu et al., PRD 71 (2005) 114007

 $\frac{\tau d\sigma}{d\tau d\phi} \sim \sum_{a,b} \int_{\tau}^{1} \frac{dx_{a}}{x_{a}} \int_{\tau/x_{a}}^{1} \frac{dx_{b}}{x_{b}} f_{a}(x_{a},\mu^{2}) f_{b}(x_{b},\mu^{2}) \omega_{ab}(z,M_{\mu\mu}^{2}/\mu^{2},\alpha_{s})$ e.g. in transverse spin asymmetry

 $\omega_{ab}(z, M_{\mu\mu}^2 / \mu^2, \alpha_s) = \omega_{q\bar{q}}^{(0)}(z) + \frac{\alpha_s}{\pi} \omega_{q\bar{q}}^{(1)}(z, M_{\mu\mu}^2 / \mu^2) + \cdots$ $\omega_{q\bar{q}}^{(1)}(z, M_{\mu\mu}^2 / \mu^2) = C_F \left[4z \left(\frac{\ln(1-z)}{1-z} \right)_+ + \cdots \right]$

note: large contribution from the region $z \rightarrow 1$

Mellin transformation:
$$\int_{0}^{1} dx \, x^{N-1} F(x)$$
$$\frac{d\sigma^{N}}{d\phi} \sim \sum_{f} f^{N}(\mu^{2}) \overline{f}^{N}(\mu^{2}) \omega^{N}(M_{\mu\mu}^{2} / \mu^{2}, \alpha_{s})$$
$$\omega_{q\overline{q}}^{(1)N}(M_{\mu\mu}^{2} / \mu^{2}) = C_{F} \Big[2\ln^{2}(Ne^{\gamma_{E}}) + \cdots \Big]$$
A large term at $z \to 1$ corresponds to
a large term in the Mellin space at $N \to \infty$.

Large contributions come from the partonic threshold region

$$z=\frac{M_{\mu\mu}^{2}}{\hat{s}}\sim 1.$$

Soft-gluon resummation is needed.

 $\tau = M_{\mu\mu}^2 / s, \quad z = \tau / (x_a x_b) = M_{\mu\mu}^2 / \hat{s}$

Applicability of perturbative QCD in Drell-Yan

Higher-order corrections are large at J-PARC (50 GeV); however, the pQCD terms could be under control in Drell-Yan.

50-GeV beam

30-GeV beam

Hadron facilities m²_{µµ} e.g. Drell-Yan: $x_1x_2 =$ \mathbf{X}_{1} \mathbf{X}_2 S (**m**²_{µµ} $p + p(A) \rightarrow \mu^+ \mu^- + X \quad (q\overline{q} \rightarrow \mu^+ \mu^-)$ • $s = (p_1 + p_2)^2$ **J-PARC:** $\sqrt{s} = 10$ GeV *e.g.* Quark spin content: $\Delta q = \int_0^1 dx \Delta q(x)$ **RHIC:** $\sqrt{s} = 200 \text{ GeV}$ LHC: $\sqrt{s} = 14$ TeV = Integral from small x (RHIC) to large x (J-PARC). • $m_{\mu\mu} \geq 3 \text{ GeV}$ argo r fooility

$$\sqrt{s} = \frac{10}{3} = 0.02$$
 RHIC

$$\geq \frac{3}{200} = 0.002$$
 LHC Small-x facility

Flavor asymmetric antiquark distributions: $\overline{u} / \overline{d}$

J-PARC proposal, M. Bai et al. (2007)

This project is suitable for probing "peripheral structure" of the nucleon.

http://www.acuonline.edu/academics /cas/physics/research/e906.html

SK, Phys. Rep. 303 (1998) 183;
G. T. Garvey and J.-C. Peng,
Prog. Part. Nucl. Phys. 47 (2001) 203.

Nuclear corrections on parton distribution functions

大きい×Bjorken領域の小さい構造関数を測定して意味があるか?

PDF (parton distribution function) uncertainty by MSTW-2009

MSTW

CTEQ6.6

Important x region for finding an "exotic event" in a high- p_T region at LHC.

J-PARC x region

Quark substructure?

• Higher-twist

Nucleon spin

Naïve Quark Model $\Delta \Sigma = \Delta u_{\nu} + \Delta d_{\nu} = 1$

Sea-quarks and gluons?

Recent data indicate ΔG is small at $x \sim 0.1$.

Orbital angular momenta ?

J-PARC

Electron / muon scattering $\Delta\Sigma\approx 0.2\sim 0.3$

Almost none of nucleon spin is carried by quarks!

$$\frac{1}{2} = \frac{1}{2} \left(\underbrace{\Delta u_{v} + \Delta d_{v} + \Delta q_{sea}}_{\Delta \Sigma} \right) + \Delta G + L_{q} + L_{g}$$

・世界的な研究動向は? 世界の研究者が興味を持つか? ・次世代を担う研究者がいるか? 5-10年後にユーザがいるか?

(T.-A. Shibata at the KEK workshop, 2010-01)

Hadron physics with 30 – 50 GeV proton beam

現時点(30 GeV)で可能なプロジェクト

- Spin physics in elastic pp reaction
- Hadron interactions in nuclear medium
- Short-range NN interactions
- J/ψ , charm physics
- Generalized parton distributions

• Drell-Yan? ...

50 GeVの陽子ビーム

- Drell-Yan
- Single spin asymmetries
- Spin structure of spin-1 hadrons ...

50 GeV の 偏極 陽子 ビーム

- Drell-Yan: Double asymmetries (Polarized PDFs)
- Complimentary to RHIC-Spin (large-x physics)

• • • •

J-PARCにおける高エネルギーハドロン物理の「Q&A」

- AGSの残飯整理では?
 - 重要な未解決問題あり。AGS以後に発展した課題あり。
- ・構造関数の物理はHERAで終わりでは? 核子スピンの起源は不明。核子の3次元描像(GPDs)の研究は始まったばかり。
- ・大きいx_{Bjorken}領域の小さい構造関数を測定して意味があるか? スピンの総和(xの積分)、ハドロン模型の検証、LHCでの新発見の基礎
- ・摂動論的QCDの補正が大きく、分布関数を取り出せないのでは? グルーオンの再足し上げの研究が進み、Drell-Yanは理解可能。
- ・世界的な研究動向は? 世界の研究者が興味を持つか? RHIC, Fermilab, CERN-COMPASS, JLab, GSI-FAIR, EIC, ...
- ・次世代を担う研究者がいるのか? 5-10年後にユーザがいるか?
 RHIC, HERMES, COMPASS, Fermilabで活躍中の多数の日本人研究者あり。
 RHIC等の実験に関連して活躍中のハドロン理論家が多数あり。
- ・ノーベル賞を取れる様な重要な成果を出せるのか?
 確実に(また重要な)成果は出せるが、ノーベル賞までには至らないのでは?
 しかし、ノーベル賞に値する新発見のための基礎データは提供可能
- ・大強度ビームの特徴を生かしているのか?
 小さい断面積まで測定できる。→運動学的領域を広げた測定が可能
- ・ハドロン実験が基本相互作用に関して何の貢献ができるのか? QCDの非摂動的側面(カラーの閉じ込め等)に貢献、 ハドロン物理学は究極物質の構造と性質を研究する分野

"Null experiments" でノーベル賞を 狙うのは良いけれど...

30-50 GeVの陽子ビームがある以上、 着実に成果を出せるプロジェクトを 推進しては?

The End

The End