Possible Day One SAMURAI+NEBULA Experiments

Motivation/ Ground Rules

"Early Phase" -Commissioning Experiments

Day One Experiments

Conclusions

Nigel Orr – SAMURAI Workshop 3/11

Motivation & Ground Rules ...

EARLY PHASE / COMMISSIONING EXPERIMENTS

AIM: validate operation of SAMURAI+NEBULA & analysis + simulation procedures **REQUIREMENTS** ...

- \rightarrow Established systems/well known resonances (eg., ⁷He, ¹⁰Li ...)
- \rightarrow Single-neutron detection core + n systems
- \rightarrow No γ -ray detection (no core fragment bound E_x or not populated)
- \rightarrow Short expts high rate secondary beam(s) + reasonanble σ

... multiple reaction channels from single beam

→ Some physics in parallel – spectroscopy of n unbound systems

 \Rightarrow Light neutron-rich systems (A<15-20)

Possibilities ...

 $^{14}B \rightarrow ^{7}He$, ^{10}Li ("known") ^{9}He , ^{12}Li (N=7, 9 physics)

 $[^{17}C \rightarrow ^{7}He, ^{16}B ("known") ^{15}Be (search, N=11)]$

Approx. "Selection Rules" removal of nucleon(s) from high-energy beam

(i) 1 & 2-proton knockout $\Rightarrow M_n=0$ proj. valence neutron config.

eg. : $C({}^{11}Be, {}^{9}Li+n)X, C({}^{11}Be, {}^{8}He+n)X \rightarrow vs_{1/2} [{}^{11}Be C^{2}S(vs_{1/2}) \approx 0.8]$

(ii) 1-neutron knockout from 2n halo \Rightarrow halo valence neutron configs

eg.: $C({}^{11}Li, {}^{9}Li+n)X \rightarrow v S_{1/2} + v p_{1/2} [{}^{11}Li (v S_{1/2})^2 + (v p_{1/2})^2 \approx 100\%]$

(iii) fragmentation (-xp,-yn) \Rightarrow population via neutron-decay of N+1 system eg. : C(¹⁴B,⁹Li+n)X, C(¹⁴B,⁸He+n)X $\rightarrow vs_{1/2} + vp_{1/2} + ...$

[→ CAVEAT: decay of <u>narrow resonances</u> in N+1,2,... systems]

⁷He: C(¹⁴B,⁶He+n)X ... REFERENCE SYSTEM

$E_r = 0.44 \ \Gamma_0 = 0.16 \ \text{MeV}$

H Al Falou, LPCC T 07-02

¹⁰Li: C(¹⁴B,⁹Li+n) ... RESOLVING POWER + LOW E_d RESPONSE

s-wave $[a_s = -10 \text{ fm}] + p$ -wave $[E_r = 0.50, \Gamma_0 = 0.50 \text{ MeV}]$

[see also GSI-LAND with ¹¹Li]

H AI Falou, LPCC 07-02

Physics: N=7 & 9 Structural Evolution with Isospin ...

⁹He: C(¹¹Be,⁸He+n) ...

s-wave [$a_s \approx -3$ fm]

Also ... GSI-LAND : HT Johansson, et al. (2010) MSU L Chen et al. (2000)

H AI Falou LPCC 07-02

⁹He: C(¹⁴B,⁸He+n) ... E_x*

s-wave $[a_s \approx -3 \text{ fm}] + p$ -wave $[E_r \approx 1.2, \Gamma_o \approx 1.0 \text{ MeV}]$

* Improve Statistics + Resolution

H AI Falou LPCC 07-02

¹²Li: Be(¹⁴B,¹¹Li+n) ... E_x – IMPROVE * + SEARCH for HIGHER E_x

s-wave $[a_s = -14 \text{ fm}] + d$ -wave $[E_r = 0.250, \Gamma_0 < 0.015 \text{ MeV} + E_r = 0.55, \Gamma_0 < 0.08 \text{ MeV}]$

... s-wave fixed by p(¹⁴Be,¹¹Li+n): Yu. Aksyutina et al. (GSI-LAND), Phys Lett. B (2008)

* <u>Resolution</u> + Statistics

MONa : CC Hall et al., Phys Rev. C (2010)

¹⁸B & ²¹C : two-neutron halo input structure @ N=13 & 15 ...

POSSIBLE DAY ONE EXPERIMENTS

GOAL: employ complementary reactions (-1n & -1p) to explore different states ...

... extend existing work + untilise power of BigRIPS N/Z>>1

→
$${}^{19}C + {}^{19}B \text{ beam: } C({}^{19}C, {}^{17}B+n) ; C({}^{19}B, {}^{17}B+n)$$

→ ${}^{22}N + {}^{22}C \text{ beam: } C({}^{22}N, {}^{20}C+n) ; C({}^{22}C, {}^{20}C+n)$

REQUIREMENTS ...

- \rightarrow Single-neutron detection core + n systems
- $\rightarrow \gamma$ -ray detection core (E_x) ... high ε_{γ} + moderate FWHM *
- → mixed beam (BigRIPS), -1p & -1n channels (SAMURAI)

Modelling Two-Neutron Halo Systems ...

3-body systems \Rightarrow n-n and core-n interactions

¹⁹B : ¹⁷B-n interaction ~ ¹⁸B \Rightarrow N=13 ... $vs_{1/2} - vd_{5/2}$?? ²²C : ²⁰C-n interaction ~ ²¹C \Rightarrow N=15 ... $vs_{1/2} - vd_{5/2}$??

¹⁸B: Be(¹⁹C, ¹⁷B+n) ... s-wave Ground State ... E_x ??

s-wave [a_s < -50 fm]

* ¹⁷B* (1.08 MeV) – NO γ-detection

A. Spyrou et al. PLB (2010)

²¹C: N=15 $vs_{1/2} - vd_{5/2} \dots$??

²²C: $\sigma_R @ 40 \text{ MeV/nucleon} \Rightarrow (v_{S_{1/2}})^2 + ... ??$ K Tanaka et al., PRL (2010)

... also ²²C breakup – σ_{-2n} & d σ /dp ... N Kobayashi, T Nakamura et al.

Conclusions ...

EARLY PHASE / COMMISSIONING EXPERIMENTS ...

¹⁴B \rightarrow ⁷He, ¹⁰Li ("reference") ⁹He, ¹²Li (N=7, 9 physics)

~1 day run ... ¹⁸O primary beam - moderate I_B, 150-250 MeV/nucleon OK

DAY ONE EXPERIMENTS – two-neutron halo input & structure @ N=13,15 ...

- \rightarrow ¹⁹C + ¹⁹B beam: C(¹⁹C, ¹⁷B+n); C(¹⁹B, ¹⁷B+n)
- \rightarrow ²²N + ²²C beam: C(²²N,²⁰C+n); C(²²C,²⁰C+n)

~3-5 day runs ... ⁴⁸Ca primary beam – high I_B , γ -detection NB: possibility to couple with EMD dB(E1)/dE measurements

¹⁰Li : p,C(¹¹Li,⁹Li+n) ...

H Simon et al. NUPA (2007) ; Yu. Aksyutina PLB (2008)

⁹He: p(¹¹Li,⁸He+n) ...

GSI-LAND: HT Johansson, Yu. Aksyutina et al. (2010)

¹²Li: p(¹⁴Be,¹¹Li+n) ... s-wave Ground State

s-wave $[a_s = -14 \text{ fm}]$

GSI-LAND : Yu. Aksyutina et al., Phys Lett. B (2008)

... N=9

¹⁶B: C(¹⁷C, ¹⁵B+n)X ... REFERENCE RESONANCE

JL Lecouey et al, PLB (2009)

¹⁶B: Be(¹⁷C, ¹⁵B+n)X ... REFERENCE RESONANCE

d-wave $[E_r = 0.060, \Gamma_0 << 0.1 \text{ MeV}]$

A. Spyrou et al. PLB (2010)

¹⁶B: p(¹⁷B, ¹⁵B+n)X ... REFERENCE RESONANCE

Y. Sato et al, unpublished