ANCs from nuclear breakup for nuclear astrophysics

Livius Trache, Texas A&M University for the TLW collaboration SAMURAI workshop, Wako-shi 03/10/11

Breakup of loosely bound nuclei at intermediate energies for nuclear astrophysics

... and the development of a position sensitive microstrip detector system and its readout electronics using ASICs technologies

(full title of grant by Office of Science, DOE, 2010 under: "Research Opportunities at Rare Isotope Beam Facilities")

And proposal NP0609 RIBF13:

- •Texas A&M University
- •RIKEN Nishina Center, CNS Univ of Tokyo
- •LPC Caen, IFIN-HH Bucharest, INFN Pisa, ...

Proposal accepted at RIBF NP-PAC-05, June 2009

yesterday (Brain Roeder and Rebecca Shane)

Motivation

- Overlapping science interests with RIKEN groups, complementary methods and possibilities:
 - Nuclear astrophysics
 - indirect methods w RNBs:
 - Coulomb dissociation RIKEN: T. Motobayashi and group: ⁸B, ⁹C, ²³Al, ²⁷P, ¹²N, ¹³N, ¹³O, ¹¹Li, ¹⁷B, ¹⁹C, etc...
 - Nuclear dissociation TAMU et al: ⁸B, ⁹C, ²³Al, ²⁴Si, ... or transfer: ¹²N, ¹³O, ¹⁴O, ...
 - Facilities:
 - RIBF for RNBs E > 100-345A MeV vs.
 - MARS & TREX (Texas Reaccelerated EXotics) at TAMU E=10-50A MeV
 - from p-capture studies to n-capture and n-rich nuclei
 - Advanced detection systems
- Develop knowledge and tools for future use in rare isotope beam research in US and Japan
- Involve also scientists from Europe, expers and theoreticians

Nuclear astrophysics - indirect measurements

- One-nucleon-removal reactions tool to study the single particle structure of unstable nuclei:
 - Use it to determine **ANC** and from there (p,γ) rates for nuclear astrophysics
- Obtain data to check theoretical models:
 - Momentum distributions
 - Configuration mixing
 - breakup mechanisms (stripping or dissociation)
- Proposed nuclear breakup experiments @ 100 MeV/u (on light targets):
 - ⁹C one- and two-proton removal
 - Measure at 100 MeV/u on Be (or C) target to obtain ANC
 - Measure nuclear and Coulomb dissoc at 300 MeV/u to obtain direct and resonant S-factor (Be and Pb targets) for ${}^{8}B(p,\gamma){}^{9}C$
 - Measure momentum distributions for one- and two-proton removal to study the reaction mechanism
 - ¹⁷F one-proton removal
 - To test method by comparison with ANC extracted from transfer
 - Test method by comparison with S-factors from existing direct measurements ${}^{16}\mathrm{O}(\mathbf{p},\gamma){}^{17}\mathrm{F}$
 - ²⁷P one-proton removal
 - For ANC to assess ²⁶Si(p, γ)²⁷P reaction rate (direct component) for explosive H-burning (p-process, XRB, ...)
 - Determine **configuration mixing** in ²⁷P g.s.

Nuclear astrophysics case

- Explosive H-burning
 - ${}^{8}B(p,\gamma){}^{9}C$ a possible path to hot *pp-IV* chain and rapid alpha proc *rap I* - at high temp and densities
 - ${}^{26}Si(p, \gamma)^{27}P bottleneck in H-burning in novae.$
 - Part of the effort to have ALL reaction rates from experimental data – for novae
- Use ⁹C→⁸B+p and ²⁷P → ²⁶Si+p to determine the relevant structure parameters of ⁹C, ²⁷P g.s.
- ${}^{17}F \rightarrow {}^{16}O+p$ to test method (exp and calc)

ANC in peripheral reactions: radiative proton capture, transfer and breakup

SAMURAI workshop 2011

Indirect methods for nuclear astrophysics

Example: Summary of the ANC extracted from ⁸B breakup with different interactions

Coulomb Dissociation vs direct

- pioneering ⁶Li-> α +d, ⁷Li-> α +t ...
- CD of ${}^{8}B \rightarrow {}^{7}Be+p$ at GSI, GANIL, MSU, RIKEN, ...
- CD gives results comparable with direct capture ⁷Be(p,γ)⁸B measurements
- Important: uncertainties are totally different => reliable data for input in solar model
- More CD: w. other nuclei determine the energy dependence of S(E), including resonances and their location and strength

FIG. 19: E1 ⁷Be(p,γ)^{*}B S-factors inferred from Coulomb dissociation (CD) experiments. Bottom panel: absolute CD Sfactors, together with our direct results (with the 1⁺ resonance subtracted) and the best-fit DB curve to our direct low-energy data. Top panel: CD data plotted with a common normalization based on the mean value of 19.3 eV b for $S_{17}(0)$ determined by fitting each data set to the DB theory below 400 keV. Solid curve: DB calculation; dashed curve Typel calculation. The experimental error bars shown in all cases are relative, and do not include scale-factor uncertainties.

Explosive H-burning in novae: "22Na puzzle"

- novae: explosive H-burning of accreting material in binaries star-WD. ~ 30/yr.
- E=1.275 MeV γ ray following the decay of ^{22}Na predicted, but not observed by space gamma-ray telescopes

- what are the stellar reaction rates for the ${}^{22}Mg(p,\gamma){}^{23}AI$ and ${}^{22}Na(p,\gamma){}^{23}Mg$?
- what about ²³Al(p, γ)²⁴Si?

SAMURAI workshop 2011

A. Banu et al., NIC10 Symposium 2008 & to be published

Results from ²³Al breakup

Results for ²⁴Si breakup

Measurements at BigRIPS-ZD and SAMURAI

SAMURAI – allows separation of stripping and dissociation mech.

SAMURAI workshop 2011

Zero Degree Spectrometer

(from T. Motobayashi, OMEG07)

AT RIKEN Secondary beam → target → LI +HI tracking → SAMURAI → proton and HI hodoscopes

Test rigs at WU and TAMU with existing PCB mounting

We have started to test with the 2D TTT (300 um)

- AREA →97.3 x 97.3 mm
- # strips → 128 x 128 → 256 per Si, 512 per pair
- Pitch → 756 um
- Si type \rightarrow available in both n and p (intrinsic). We have one of each
- Thickness \rightarrow available in both 300 and 500 μ m, we have 300 μ m.
- pf \rightarrow 300 µm: 0.35 pf/mm² = 26 pf/st; 500 µm: 0.21 pf/mm² = 15.4 pf/st

Si –TTT (WU)

Si in chamber (TAMU)

External view (WU)

SAMURAI workshop 2011

Interested in the accuracy of absolute values of cross sections. What different models, parameters , codes (and theoreticians) give?!

${}^{9}C \rightarrow {}^{8}B+p$ breakup for ${}^{8}B(p,\gamma){}^{9}C$

The reaction is important in the hot pp chains, in explosive H burning, at large temperatures, for creating alternative paths across the A=8 mass gap (see e.g. M. Wiescher et al., Ap. J. 343 (1989)352.)

pp IV ${}^{8}B(p,\gamma){}^{9}C(\beta^{+}\nu){}^{9}B(p){}^{8}Be(\alpha){}^{4}He$ and rap I ${}^{8}B(p,\gamma){}^{9}C(\alpha,p){}^{12}N(p,\gamma){}^{13}O(\beta^{+}\nu){}^{13}N(p,\gamma){}^{14}O.$

Use breakup of ${}^{9}C \rightarrow {}^{8}B+p$ at intermediate energies to obtain ${}^{8}B(p,\gamma){}^{9}C$ at astrophysical energies.

Analyze existing data from

B. Blank et al., Nucl Phys A624 (1997) 242 ⁹C @285 MeV/u on C, Al, Sn and Pb targets

Find new reaction rate:

$$R = N_{A} < \sigma v > = T_{9}^{-2/3} \exp(\frac{B}{T_{9}^{1/3}})(A_{0} + A_{1}T_{9}^{1/3} + A_{2}T_{9}^{2/3}) \text{ cm}^{3}/\text{s/mol}$$

with B=11.94, A₀=6.64e5, A₁=8.50e4, A₂=-2.41e5.

Astrophysical S-factor

T Motobayashi

July 2002

NIC-7

10-Mar-2011

More complementarities:

- -⁹C→⁷Be+ p+ p at TAMU? E~ 25A MeV
- ¹³C(²⁶Mg,²⁷Mg) n-transfer at 10A MeV & mirror symmetry for ²⁶Si(p,γ)²⁷P
- Combine nuclear and Coulomb breakup to get S(0) and resonance widths Γ_{γ}
- Reaction theory developments
 - C. Bertulani, K. Ogata (Kyushu Univ), F Carstoiu, A Bonaccorso, D. Brink

Reaction theory advances (promised, some done already)

- Reaction theories and codes need improvements to treat r. with marginally stable and short-lived nuclear systems
- Better connection structure-reactions
- Study of approximations and effective interactions used; effect of truncations in Hilbert space and of antisymmetrization; coupling to continuum
- Relativistic corrections, kinematic and dynamical

Team

- L. Trache, R.E. Tribble, A. Banu, B. Roeder + 3 students - *Texas A&M University*
- T. Motobayshi, K. Yoneda, N. Togano, N. Aoi, S. Takeuchi *RIKEN Nishina Center*
- S. Shimoura, E. Ideguchi, S. Go *CNS, Univ Tokyo*
- C. Bertulani *Texas A&M Univ Commerce (JUSTIPEN participant)*
- N. Orr, J. Gibelin, L. Achouri *LPC Caen*
- F. Carstoiu *IFIN Bucharest*
- A. Bonaccorso *INFN Pisa*

