Coulomb Breakup of Neutron Drip-line Nuclei at SAMURAI

Takashi Nakamura Tokyo Institute of Technology

SAMURAI Workshop, Mar.2011

Introduction

Enhancement of E1 Strength at Low Excitation Energies

Unique properties for Neutron Halo/Skin Nuclei

•Soft Dipole Excitation —Strong E1 transitions due to <u>Halo Structure</u>

•Pigmy Dipole Resonance

—Collective Motion in <u>Neutron Skin Nuclei</u>→T.Kobayashi

Coulomb Breakup

N.B. S_n,S_{2n}: Estimated value by Audi & Wapstra (Jurado et al.(PLB649,43(2007)), incorporated)

Soft E1 Excitation—In Halo Nucleus

→ <u>Spectroscopic Factor</u> & <u>Angular Momentum</u> of Valence Neutron

c.f. ¹⁹C, T.N *et al.*, PRL 83, 1112 (1999).

Soft E1 Excitation—2n Halo Nucleus

Non-energy Cluster Sum Rule H.Esbensen and G.F.Bertsch, NPA542, 310 (1992)

$$B(E1) = \int_{-\infty}^{\infty} \frac{dB(E1)}{dE_x} dE_x = \frac{3}{4\pi} \left(\frac{Ze}{A}\right)^2 \left\langle r_1^2 + r_2^2 + 2(\vec{r_1} \cdot \vec{r_2}) \right\rangle = \frac{3}{\pi} \left(\frac{Ze}{A}\right)^2 \left\langle r_{c-2n}^2 \right\rangle$$
$$\left\langle \theta_{12} \right\rangle = 48^{+14}_{-18} \deg < 90 \deg$$

→Neutron-Neutron Spatial Correlation

<u>1n halo nuclei</u>

- Low S_n value (<~1MeV)
- Dominance of s or p orbital for the valence neutron

For $20 < N < 28 \rightarrow$ valence neutron: $f_{7/2}$ Conventional Shell order <u>forbids</u> the formation of halo

<u>Shell-melting</u>, Deformation → Halo formation?

2n halo nuclei

In addition to low S_n and low L, Dineutron-like correlation--- (mixing of L)

"Inclusive" Coulomb Breakup (Day1Dec.2008) ³¹Ne+Pb→³⁰Ne+X @230MeV/nucleon PRL ²²C+Pb→²⁰C+X @240MeV/nucleon

²⁹Ne,^{33,35,37}Mg,^{39,41}Si (Nov.2010)

T. Nakamura, N.Kobayashi, Y.Kondo, Phys.Rev.Lett.103,262501(2009).

RI beam Intensity @RIBF <u>~10³-10⁴ times/RIPS</u>

³¹Ne ~5 counts/s
²²C ~ 6 counts/s
From ⁴⁸Ca @345MeV
(60-80pnA)
→ ~200pnA (2010)

c.f. About 10years ago... ³¹Ne -- 4 counts/day @RIPS H.Sakurai et al., PRC54,2802R(1996).

³¹Ne (N=21)

 $2p_{3/2} \text{ or } 2s_{1/2} \underline{\text{Low-L orbits dominant}} \underline{1n-halo structure of {}^{31}Ne} {}^{30}Ne(0^+)X1f_{7/2} \text{ dominance excluded } \rightarrow \underline{Shell gaps(20,28) vanish}$

This is not the end of the story...

Deformation---Strong Configuration Mixing C²S<1 S_n– Basically Not Known! (Sn<0.4MeV for p config.) Particle Rotor? (I.Hamamoto, Hagino, Private Comm.)

Coulomb Breakup of (1n+core)-system

Shape & Strength of B(E1) spectrum

Exclusive Coulomb Breakup of ¹⁹B, ²²C and ³¹Ne (if possible other neutron drip line nuclei ^{35,37}Mg,⁴¹Si). as a Day-1 experiment of SAMURAI/NEBULA

•<u>Could be symbolic experiments for "Heavy Halo"</u> ³¹Ne, ²²C: Inclusive measurements done Halo Structures have been suggested (but microscopically not at all known so far)

 \rightarrow Physics results have impacts!

 <u>Suitable for check the SAMURAI system(except for heavy frag.)</u> <u>Neutron detectors for 1n decay channel (³¹Ne,^{35,37}Mg,⁴¹Si)</u> <u>and for 2n decay channel (¹⁹B,²²C)</u> <u>+ Basic functions of beam and fragment detectors.</u>

Important at the early stage of SAMURAI/NEBULA!

Setup

Yield Estimation

	Intensity(cps)	E/A	Channel	Yield C(cph)	Yield Pb(cph)
¹⁹ B	20	240.	¹⁷ B+2n	80	68
²² C	20	240.	²⁰ C+2n	160	93
³¹ Ne	20	240.	³⁰ Ne+n	200	160

200pnA ⁴⁸Ca beam at 345MeV/nuc 2ndary Targets: C(2g/cm²),Pb(3g/cm²) σ (²²C+C)=210mb, σ (²²C+Pb)=1.4b (measured) σ (³¹Ne+C)=80mb, σ (³¹Ne+Pb)=0.7b (measured) σ (¹⁹B+C)= 100mb, σ (¹⁹B+Pb)=1b (assumed)

	Channel	C(da	ys) Pb(da	ays) Emp(da	ays) Total (days)
¹⁹ B	¹⁷ B+2n	2.6	3.1	0.8	6.5
²² C	²⁰ C+2n	1.3	2.3	0.4	4.0
³¹ Ne	³⁰ Ne+n	1.0	1.3	0.3	2.6
Calibra	1.9				
					15.0 days

5000 events/one setting

We would like to submit a proposal to RIBF PAC in summer 2011.

How to extract physics observables (B(E1) spectrum)

 Method 1: Subtract nuclear contribution estimated from the breakup with C taget

$$\frac{d\sigma(E1)}{dE_x} = \frac{d\sigma(Pb)}{dE_x} - \Gamma \frac{d\sigma(C)}{dE_x} \qquad \Gamma = \sim 1.7 - 2.6$$
$$\frac{d\sigma(E1)}{dE_x} = \frac{16\pi^3}{9\hbar c} N_{E1}(E_x) \frac{dB(E1)}{dE_x}$$

Method 2:Use of Angular distribution

Angular resolution sufficient?

$$θ_{gr}$$
=0.84 deg (²²C+Pb, 240MeV/n)
(Δθ(mul)=0.34 deg)
 $θ_{gr}$ =0.99 deg (³¹Ne+Pb, 240MeV/n)
(Δθ(mul)=0.40 deg)

Estimation of required duration of empty-target runs

• α : Yield(beam) for empty run/ that for in-target run

$$\alpha = \frac{N_{beam}(Empty)}{N_{beam}(Target)} \approx \frac{T_{beam}(Empty)}{T_{beam}(Target)}$$

Yield of events and its statistical uncertainty

$$N_{sg} - \frac{N_{bg}}{\alpha} \pm \sqrt{N_{sg} + \frac{N_{bg}}{\alpha^2}}$$

• β :inverse of S/N ratio

$$\left(\frac{N_{bg}}{\alpha}\right) = N_{bg}(for \ N_{beam}(target)) = \beta N_{sg}$$

• Relative statistical uncertainty:

$$\frac{\sqrt{N_{sg} + \frac{N_{bg}}{\alpha^2}}}{N_{sg} - \frac{N_{bg}}{\alpha}} = \frac{\sqrt{N_{sg}}}{N_{sg}} \frac{\sqrt{1 + \frac{\beta}{\alpha}}}{(1 - \beta)}$$

Plane wave approximation

$\ell_i \to \ell_f$	$dB(E1)/dE \propto E_{rel}^{\ell_c+1/2}(E_{rel} \sim 0)$	$dB(E1)/dE \max at$
$s \rightarrow p$	$\propto E_{rel}^{3/2}$	$E_{rel} = 3/5(S_n)$
$p \rightarrow s$	$\propto E_{rel}^{1/2}$	$E_{rel} \approx 0.18 S_n$
$p \rightarrow d$	$\propto E_{rel}^{5/2}$	$E_{rel} = 5/3(S_n)$
$d \rightarrow p$	$\propto E_{rel}^{3/2}$	$E_{rel} = 5/3(S_n)$

c.f. Lecture at Tokyo Tech by I.Hamamoto Mar.2009

Exclusive Measurement is essential to understand microscopically halo structure !

Mixing of Angular Momentum : Essential for dineutron correlation

- ¹¹Li p & s mixing
- ²²C s & d and more?
- (²²C could be easier in theory since core ${}^{20}C(gs)$ is 0+)

