Invariant-mass spectroscopy of neutron-rich unbound nuclei using SAMURAI

Yosuke Kondo

Tokyo Institute of Technology

Contents

- Physics topics, etc... (general)
- •Specific case (²⁶O and ²⁷O)
 - Candidate of the first experiment of SAMURAI

Shell evolution in extremely neutron-rich region

- Appearance/disappearance of magic number
 - Shell evolution
 - Spectroscopy of n-rich nuclei towards the drip line

Spectroscopy of unbound nuclei → shell changing in extremely neutron-rich region

Three body structure of Borromean nuclei

Borromean nuclei (⁶He, ¹¹Li, ...)

Three body system (core +n+n) with no bound binary sub-systems (core+n, n+n)

- <u>Di-neutron correlation</u>? (⁶He, ¹¹Li)
 - dB(E1)/dE strength of a Borromean nucleus
 - Three body model theory
 - Interaction of core+n sub-system is needed
- → dB(E1)/dE of a Borromean nucleus + spectroscopy of core+n sub-system

Invariant-mass spectroscopy of unbound states studied using **RIPS**

Spectroscopic studies of unbound states were limited to p-/sd-shell nuclei

Invariant-mass spectroscopy of unbound states studied using **SAMURAI**

We can access many unbound nuclei using SAMURAI+BigRIPS

How to produce unbound nuclei?

1. One-proton removal reaction

- ©Useful to access very neutron-rich nucleus
- ☼Population of ground state is favored (x neutron-hole configuration)

2. One-neutron removal reaction

- ©Ground & excited states are populated (o neutron-hole configuration)
- Momentum distribution is useful to deduce neutron orbit
- ⊗Beam intensity is weak (compared with -1p reaction)
- Should pay attention to the 2n decay following inelastic scattering of a beam nucleus
 - e.g. ¹³Be case Y. Kondo et al. PLB690, 245, (2010)
 - 14 Be (-1n)→ 13 Be → 12 Be+n
 - 14 Be (inelastic) → 14 Be* $^{+}$ 12 Be+n(+n) this made mimic peak in the spectrum

3. Two-proton removal reaction

- ⊗Cross section is one order of magnitude less than that of -1p reaction
- ©Beam intensity is one order of magnitude larger than that of -1p reaction
 - → statistics of reaction yield is comparable to the -1p reaction
- Less selection rule? (compared with -1p reaction)
 - ©ground & excited states are expected to be populated

Typical experimental setup

Same as (γ,n) experiment

$$E_{rel} = \sqrt{\left(\sum E_i\right)^2 - \left(\sum \vec{p}_i\right)^2} - \sum M_i$$

Candidate of the first experiment at SAMURAI

Spectroscopy of the unbound nuclei ²⁶O and ²⁷O

Neutron drip line at Z=8

- Anomalous behavior of the neutron drip line at Z=8
 - N=16 (oxygen)
 - N=22 (fluorine)
- Shell evolution towards ²⁸O (Z=8, N=20)

Drip line is determined by ...

The effect of is large at N>16

Situation of experimental studies for neutron-rich oxygen isotopes

- ²⁴O (N=16)
 - C.R.Hoffman et al., PLB672, 17 (2009)
 - 2+ (& 1+?) state
 - total ~ 300 counts / ??hrs
- ²⁵O (N=17)
 - C.R.Hoffman et al., PRL100, 152502 (2008)
 - ground state (3/2+?)
 - 20pps 26F
 - total ~ 400 counts / ??hrs
 - No information about its excited states
- ²⁶O (N=18)
 - No experimental information is available
 - experiment @ MSU?
 - 165hrs requested and approved (Mar 2008)
 - http://www.nscl.msu.edu/exp/approvedexp/31
 - statistics is probably poor?
- ²⁷O (N=19)
 - No experimental data

Feasibility

- ^{26}O ($^{28}Ne -2p \rightarrow ^{26}O \rightarrow ^{24}O + 2n$)
 - not only g.s. but also ex. state are expected to be populated
 - 7kpps ²⁸Ne beam (←EPAX2 correction factor is taken into account)
 - -2p cross section 0.1mb
 - Be target 2g/cm²

http://www.nishina.riken.jp/UsersGuide/BigRIPS/intensity.html

- 2n detection efficiency 10% (crosstalk cut is roughly considered)
- \rightarrow 800 counts/day (one-day experiment \rightarrow first experiment?)
- excited states of ²⁵O can also be studied
- ${}^{27}O$ (${}^{29}Ne 2p \rightarrow {}^{27}O \rightarrow {}^{24}O + \underline{3n}$)
 - 900pps ²⁹Ne beam (←EPAX2 correction factor is taken into account)
 - -2p cross section 0.1mb
 - Be target 2g/cm²
 - 3n detection efficiency 6% (=0.4³ ← doesn't include crosstalk cut)
 - \rightarrow 70 counts/day (1week experiment? \rightarrow second experiment?)

Considering Issues

- · 26O
 - Trigger rate

Trigger=SBT ∩ (NEBULA OR)

- One solution is to use the ${}^{27}F \rightarrow {}^{26}O$ reaction (-1p reaction)
 - Total rate becomes $1/10 \rightarrow$ feasible
 - May lose possibility of observation of the 2⁺ state
- → Realistic total beam rate should be estimated
- →Further optimization of BigRIPS setting is needed to gain purity in the LISE++ calc.
- 27O
 - Realistic 3n detection efficiency including crosstalk rejection should be estimated
 - How many counts do we need to identify a resonance?
 - Wide resonance width → high statistics is needed
 - background

Summary

- Invariant-mass spectroscopy of unbound nuclei using SAMURAI
 - Shell evolution near/beyond neutron drip line
 - Borromean three body system
- Plan to submit a proposal for the ^{26,27}O experiment at the next PAC meeting (June)
 - Further estimation Should be done
 - ²⁶O
 - Total beam rate
 - ²⁷O
 - 3n detection efficiency
 - Estimation (prediction) of the resonance width