Extraction of ANC via Coulomb breakup

AKazuyuki Ogata

^AK. Minomo, ^AT. Fukui, ^BC. A. Bertulani, and ^AM. Yahiro

^ADepartment of Physics, Kyushu University ^BTexas A&M, Commerce

1) Brief introduction to CDCC

— M. Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl. **89**, 1 (1986); N. Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. **154** (1987) 126.

2) Some "new" aspects of our paper on $S_{17}(0)$

— KO, Hashimoto, Iseri, Kamimura, and Yahiro, PRC73, 024605 (2006).

3) Some results on breakup of ⁹C

— KO, Minomo, Bertulani, and Yahiro, in preparation

The Continuum-Discretized Coupled Channels method (CDCC)

$S_{17}(0)$ extracted from ⁸B breakup with CDCC

— KO, Hashimoto, Iseri, Kamimura, and Yahiro, PRC73, 024605 (2006).

Three "new" aspects of our S_{17} paper

- KO, Hashimoto, Iseri, Kamimura, and Yahiro, PRC73, 024605 (2006).

1) The first work to determine ANC from exclusive Coulomb breakup (showing peripherality of Coulomb breakup reaction)

Coulomb-dominated breakup is peripheral with respect to r.

Coulomb breakup ANC method!

c.f. L. Trache, Carstoiu, Gagliardi, and Tribble, PRL87, 271102 (2001).

Three "new" aspects of our S_{17} paper

- KO, Hashimoto, Iseri, Kamimura, and Yahiro, PRC73, 024605 (2006).

2) Reduction from 4-body breakup to 3-body breakup

- **The triple-differential cross section for** (⁸**B**, ⁷**Be**+*p*) **is obtained by** $C \rho |\mathfrak{T}|^2$ with $\mathfrak{T} = \langle \chi_1 \chi_7 \phi_7^{(0)} | U_{A3} + U_{A4} + U_{A1} + V_{13} + V_{14} | \Psi_{4-\text{body}} \rangle$
- □ ⁷Be breakup cross section by ²⁰⁸Pb turned out to be negligibly small for forward-scattering. $= \begin{cases} U_{A3} + U_{A4} \approx \langle \phi_7^{(0)} | U_{A3} + U_{A4} | \phi_7^{(0)} \rangle \\ V_{13} + V_{14} \approx \langle \phi_7^{(0)} | V_{13} + V_{14} | \phi_7^{(0)} \rangle \end{cases}$

⁸B scattering from ⁹Be at 100 A MeV

Three "new" aspects of our S_{17} paper

– KO, Hashimoto, Iseri, Kamimura, and Yahiro, PRC73, 024605 (2006).

3) CDCC cross section is proportional to ANC

$$\begin{split} \langle \phi_7^{(0)} | \Psi_{4\text{-body}} \rangle &= \langle \phi_7^{(0)} | \frac{i\varepsilon}{E - H_{4\text{-body}} + i\varepsilon} | \phi_8^{(0)} e^{i\mathbf{P}\cdot\mathbf{R}} \rangle \\ &\approx \frac{i\varepsilon}{E - e_7 - H_{3\text{-body}} + i\varepsilon} | \mathfrak{S}_{\exp}^{1/2} \psi_{17}(\mathbf{r}) e^{i\mathbf{P}\cdot\mathbf{R}} \rangle \\ \text{with} \\ &\mathfrak{S}_{\exp}^{1/2} \psi_{17}(\mathbf{r}) \equiv \langle \phi_7^{(0)}(\mathbf{r}_{43}) | \phi_8^{(0)}(\mathbf{r}_{43}, \mathbf{r}) \rangle \\ &\mathsf{Normalization}_{\text{factor}} H_{3\text{-body}} = T_r + T_R + V_{17}(\mathbf{r}) + U_{A7}(\mathbf{R}_{A7}) + U_{A1}(\mathbf{R}_{A1}) \\ &\mathfrak{T} \approx \mathfrak{S}_{\exp}^{1/2} \mathfrak{T}_{3\text{-body}}, \\ &\mathfrak{T}_{3\text{-body}} \equiv \langle \chi_1 \chi_7 | U_{A7} + U_{A1} + V_{17} | \Psi_{3\text{-body}} \rangle, \end{split}$$

⁹C breakup by ²⁰⁸Pb at 300 MeV/nucleon (nuclear and higher-order effects)

⁹C breakup by ²⁰⁸Pb at 300 A MeV (check of peripherality)

Summary

1) *CDCC* is a powerful tool to describe projectile breakup processes non-perturbatively.

2) Coulomb-breakup ANC method is proposed.

- ✓ Coulomb-dominated breakup is peripheral.
- ✓ Three-body description of ⁸B and ⁹C breakup processes is justified.
- \checkmark CDCC cross section is proportional to the ANC².

3) Some results on ⁹C breakup are discussed

- \checkmark Nuclear and higher-order contributions are important.
- ✓ ⁹C breakup by ²⁰⁸Pb at (100 and) 300 MeV/nucleon is peripheral.
 - ☐ Application to ⁹C breakup at 65MeV/A (Fukui)
- \checkmark Eikonal CDCC is valid.
 - Eikonal Reaction Theory (Minomo)