

Overview of RIBF

H. Sakurai RIKEN Nishina Center

RIKEN RI Beam Factory (RIBF)

Intense (80 kW max.) H.I. beams (up to U) of 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS Operation since 2007

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

Liberation from Stable Region

Shell Evolution : magicity loss and new magicity

Dynamics of new "material" : Neutron-skin(halo)

neutron skin · Skin thickness ? Density distribution ? Role of skin in reactions ? Pairing in skin ? di-neutrons? Exotic modes of skin ?

RIBF provides data for nuclei far from the stability line

Challenges in establishing new frame work of nuclear physics

Challenge for r-process path and explosion in supernovae

Synthesis up to U (r-process) unknown neutron-rich nuclei theoretical predictions only

<u>nuclear properties of heavy and</u> <u>neutron-rich nuclei</u>

Mass, life-time, decay mode

Explosion mechanism of supernova No explosion in theoretical works Outer crust of neutron star

Equation-of-State in asymmetric matter Higher density: 3NF (T=3/2)?, ³P₂? Dilute matter : BEC, cluster-formation?

Experimental Devices available at the new facility

Scientific programs at BigRIPS/ZeroDegree 2007~

Rare-Isotope Physics Programs Fast RI beam production to search for new isotopes Global survey to search for anomalous regions Specific programs with deuteron beams

BigRIPS in-flight production of fast rare-isotope beams **Ground state properties and low lying excited states** via decay spectroscopy / transmission method: particle stability, $T_{1/2}$, Q_{β} , σ_{R} , Ex.(2⁺)... Deeply bound pionic states via (d, ³He) at 500 MeV Three-body force via pol. d+p elastic scattering at 700 MeV ZeroDegree multi-function beam line for inclusive/semi-inclusive measurements production of 3rd RI beams **Collectivity and matter distribution** via in-beam gamma / missing mass spectroscopy B(E2), B(M1), (p,p), (p,p'), (p,2p), Ex.... **Fragmentations**

DayOne Experiments in Dec., 2008 -The first data in the "island-of-inversion" -

Coordinated by Aoi

A new candidate of halo nuclei ³¹Ne via Coulomb breakup

Nakamura et al., PRL 103, 262501(2009)

Total interaction cross sections for the neutron-rich Ne isotopes

Takechi, Otsubo et al., Niigata 2010 symposium

Spectroscopy of ³²Ne and the "island-of-inversion" E(2+) = 722 keVDoornenbal, Scheit et al. PRL 103, 032501 (2009) New states in ^{31,32,33}Na PRC 81, 041305R (2010)

In-beam gamma spectroscopy on ⁴²Si ⁴⁴S->⁴²Si

Energy ~40A MeV Int. ~125 cps

NSCL \rightarrow NATURE (2005) (No peak at 770 keV) Energy ~100A MeV Integral Int. 1x10⁸ Particles 2010 RIKEN data (~36 hours)

Low-lying Excited States in ²⁴O via (p,p')

- The First Missing Mass Spectroscopy at RIBF -

2009 Dec.

U beam to access A~110 region Intensity 0.8 pnA max. 0.1-0.2 pnA on average

Half life measurements for r-process nuclei Nishimura et al., PRL 106 (11) 052502
Beta-gamma spectroscopy Sumikama et al., in preparation
Delayed gamma spectroscopy for isomers H.Watanabe et al., PLB 696 (11) 186

Sumikama, Nishimura, et al.

Clovers (RIKEN) LaBr₃ (Milano) 9 layers of DSSD (RIKEN, TUS)

Faster r-process synthesis in supernova explosion ? —new half-life data for 18 neutron-rich nuclei

超新星爆発で重元素 再現	
超新星爆発で重い元素が作られる様子	
を地上で再現したところ、一部の元素は	
これまでの理論よりも多く作られること	
がわかった。理化学研究所が発表した。	
太陽系にあるいくつかの元素は理論予想	中子星き
より10倍多く、どう作られたのか20年間	性核市た
議論が続いていたが、超新星爆発が重元	い時代であっていた。
素の工場だった可能性が高まった。	に適たカ変剰鉄有わとな力
理研の西村俊二先任研究員らは、埼玉	るなどた
県和光市の大強度重イオン加速器施設	て超た
「RIBF」で、ウランを光速の70%に加	い新にき星にた爆き
速し、ベリリウムに毎秒10億個ぶつけた。	い発す
ウランが分裂してできた元素のうち、18	(小話程)
種類は世界で初めて寿命が調べられたと	晋。解れ 史 明た
いう。(フィジカル・レビュー・レターズ)	

			平成23			3年(201		里 1		洞	用了日		月	3			9		
							ムの実験で得られた。超新	研究所などの国際共同チー	合成された証拠が、理化学	論予測の2~3倍の速さで	で、一部の元素は従来の理	り重い元素が作られる過程	超新星爆発によって鉄よ		超新星爆発		国フラに矢	自己長ま豆	
中性子が陽子に変わる「ベ子核が中性子過剰となり、	星中心にあった鉄などの原	きたとする説が有力だ。恒えたときの超衆互爆発でで	は、巨大な恒星が寿命を迎	ウランまでの元素の約半分	自然界に存在する鉄から	(電子版)に発表した。	レビュー レターズ」	う。米科学誌「フィジカル	謎を解く糸口になるとい	論予測よりも多く存在する	太陽系の一部の重元素が理	程を再現したのは世界初。	星爆発による重元素合成過		元の再現は世界初		田間でそ万	寺目で全戈	
ていきたい」と話す。	超新星爆発の過程を解明し	だけはぎ取った。これから	ま「重にそれなりまいり」	理研仁科加速器研究セン	崩壊することが判明した。	ブは理論の2~3倍も速く	過剰なジルコニウムとニオ	を測定。その結果、中性子	生成し、ベータ崩壊の過程	中性子過剰な重い原子核を	ベリリウム原子にぶつけて	まで加速したウラン原子を	(埼玉県)で、光速の約70%	「RIビームファクトリー」	強度重イオン加速器施設	国際チームは、理研の大	されていくという。	り重い安定した元素が合成	ータ崩壊」を繰り返してよ

SHARAQ Spectrometer Sakai et al 2009-

External investment by CNS, Univ. of Tokyo Focal plane detector made in GANIL, France

High resolution spectrometer for fast RI beams $p/\Delta p \sim 15,000, \Delta \theta < 1$ mrad, B $\rho=6.8$ Tm Dispersion matching technique

RI beam as new probe to control Δq, ΔS, ΔT Missing mass spectroscopy with standard kinematics Spin-isospin response probed by fast RI beams : 2250 transparent at 300A MeV Double charge exchange : double GTR, IVSMR¹⁵⁰⁰ Multi-neutron system, etc.

Commissioning in March, May 2009 IVSMR Miki, Sakai et al.

Experimental Devices available at the new facility in 2012

SAMURAI Spectrometer Kobayashi et al 2012-

versatile spectrometer with a large superconducting magnet

