Plan for LAMPS at KoRIA

Byungsik Hong (Korea University)

<u>Outline</u>

- Brief introduction to KoRIA
- Physics of Symmetry Energy for Dense Matter
- Design of LAMPS detector system
- Summary

KoRIA: Korea Rare Isotope Accelerator

Aim of Technical Specification

- 1. High-intensity RI beams by ISOL & IFF
 - 70 kW ISOL from direct fission of ²³⁸U induced by 70 MeV protons with the current of 1 mA
 - 400 kW IFF by 200 MeV/u ²³⁸U with the current of 8pµA
- 2. High-energy, high-intensity neutron-rich RI beams
 - E.g., ¹³²Sn at ~250 MeV/u up to 9x10⁸ pps
- 3. More exotic RI beams by using multi-step RI production processes (the combination of ISOL & IFF)
- 4. Design the facility for the simultaneous operation mode for maximal use
- 5. We want to keep the diversity.

RI from ISOL by Cyclotron

RI from IFF by High-Power SC LINAC and High-Intensity Stable HI beams

RI from ISOL by High-Power SC LINAC (Long term future upgrade option)

Research Goals

Nuclear Equation of State

Nuclear Equation of State

Importance of Symmetry Energy

- A.W. Steiner, M. Prakash, J.M. Lattimer and P.J. Ellis, Physics Report 411, 325 (2005)
- Red boxes: added by B.-A. Li

Is NS Stable with a Super Soft E_{sym}?

If the symmetry energy is too soft, then a mechanical instability will occur when dP/dp < 0, neutron stars will, then, collapse.

Experimental Observables

Signals at sub-saturation densities

- 1) Sizes of n-skins for unstable nuclei
- 2) n/p ratio of fast, pre-equilibrium nucleons
- 3) Isospin fractionation and isoscaling in nuclear multifragmentation
- 4) Isospin diffusion (transport)
- 5) Differential collective flows ($v_1 \& v_2$) of n and p
- 6) Correlation function of n and p
- 7) $^{3}H/^{3}He$ ratio, etc.

Signals at supra-saturation densities

- 1) π^{-}/π^{+} ratio
- 2) K^+/K^0 ratio (irrelevant to KoRIA energies)
- 3) Differential collective flows ($v_1 \& v_2$) of n and p
- 4) Azimuthal angle dependence of n/p ratio with respect to the R.P.
- Correlation of various observables
- Simultaneous measurement of neutrons and charged particles

Yield Ratio (π^{-}/π^{+})

Data: FOPI Collaboration, Nucl. Phys. A 781, 459 (2007) IQMD: Eur. Phys. J. A 1, 151 (1998)

π^{-}/π^{+} Ratio

Isospin Diffusion Parameter

Isospin diffusion occurs only in asymmetric systems A+B (No isospin diffusion between symmetric systems)

Non-isospin diffusion effects are the same for A in A+B & A+A and also for B in B+A & B+B

$$R_{i} = 2 \frac{N^{AB} - (N^{AA} + N^{BB})/2}{N^{AA} - N^{BB}}$$

F. Rami et al., FOPI, PRL 84, 1120 (2000)B. Hong et al., FOPI, PRC 66, 034901 (2002)Y.-J. Kim & B. Hong, To be published.

Isospin Diffusion Parameter

Symmetry energy drives system towards equilibrium
> stiff EOS : small diffusion (|R_i| ≫ 0)
> soft EOS : large diffusion & fast equilibrium (R_i → 0)

M.B. Tsang et al., PRL 92, 062701 (2004)

Isospin Diffusion Parameter

Observable in HIC is sensitive to the ρ dependence of $\rm E_{sym}$ and should provide constraints to the symmetry energy.

Design of Detector System

- 1. We need to accommodate
 - Large acceptance
 - Precision measurement of momentum or energy for variety of particle species including π^{+/-} and neutrons with high efficiency
 - Keep flexibility for other physics topics in the future
- 2. This leads to the design of **LAMPS**
 - Large-Acceptance Multipurpose Spectrometer
- 3. Unique features of LAMPS
 - Combination of solenoid and dipole spectrometers
 - Movable arms
 - Large acceptance of neutron detector with precision energy measurement

Conceptual Design of LAMPS

Characteristics of LAMPS

1. Solenoid spectrometer

- TPC: large acceptance (~ 3π Sr) for $\pi^{+/-}$ and light fragments
- Silicon strip detector: 3~4 layers for nuclear fragments
- Useful for event characterization

Characteristics of LAMPS

- 2. Dipole spectrometer
 - Acceptance: > 50 mSr
 - Multiparticle tracking of p, d, t, and He isotopes, etc.
 - Tracking chambers: ≥ 3 stations of drift chambers (+pad readout possible)
 - ToF: Conventional scintillation plastic detector or RPC technology

 $[\sigma_t < 100 \text{ ps, essential for } \Delta p/p < 10^{-3} @ \beta=0.5]$

Characteristics of LAMPS

- 3. Neutron detection system
 - Hybrid system of the upstream homogeneous and the downstream sampling components

Simulation of Neutron Detector

SAMURAI International Workshop

Simulation of Neutron Detector

Simulation of Neutron Detector

Layer Number vs. ToF

Magnets

Simulation by S. Hwang & J. K. Ahn

Solenoid Size (r, z) : (50 cm, 200 cm) Maximum B_{z} : about 1.0 T

H-type dipole Pole size: (x, z)=(150 cm, 100 cm) Maximum B_y : ~1.5 T (~4 T for SC option) Gradient: 1.0 T·m < $\int B_y \cdot dz < 2.0$ T·m

March 9-10, 2011

SAMURAI International Workshop

-j 200

Summary

- 1. Korea Rare Isotope Accelerator (KoRIA)
 - Plan to deliver more exotic RI beams using multi-step production and acceleration processes
 - Keep the philosophy of diversity
- 2. Large-Acceptance Multipurpose Spectrometer (LAMPS)
 - Large acceptance
 - Combination of solenoid and dipole spectrometers
 - Movable arms
 - Keep flexibility for other physics topics in the future
- 3. Symmetry Energy in EoS
 - Long-standing problem in nuclear physics
 - Crucial to understand the neutron matter & several astrophysical objects

IFF Linac Beam Specification

Ion Species	Z/ A	Ion source output		SC linac output			
		Charge	Current (pµA)	Charge	Current (pµA)	Energy (MeV/u)	Power (kW)
Proton	1/1	1	660	1	660	610	400
Ar	18/ 40	8	42.1	18	33.7	300	400
Kr	36/ 86	14	22.1	34-36	17.5	265	400
Хе	54/136	18	18.6	47-51	12.5	235	400
U	92/ 238	33-34	11.7	77-81	8.4	200	400

Estimated RIBs based on ISOL

Isotope	Half-life	Yield at target (pps)	Overall eff. (%)	Expected Intensity (pps)
⁷⁸ Zn	1.5 s	2.75 x 10 ¹⁰	0.0384	1.1 x 10 ⁷
⁹⁴ Kr	0.2 s	7.44 x 10 ¹¹	0.512	3.8 x 10 ⁹
⁹⁷ Rb	170 ms	7.00 x 10 ¹¹	0.88	6.2 x 10 ⁹
¹²⁴ Cd	1.24 s	1.40 x 10 ¹²	0.02	2.8 x 10 ⁸
¹³² Sn	40 s	4.68 x 10 ¹¹	0.192	9.0 x 10 ⁸
¹³³ In	180 ms	1.15 x 10 ¹⁰	0.184	2.1 x 10 ⁷
¹⁴² Xe	1.22 s	5.11 x 10 ¹¹	2.08	1.1 x 10 ¹⁰

KoRIA user community

KoRIA RI Beam intensities compared for ISOL & IFF

RIB species	ISOL (pps)	In-Flight Fragmentation (pps)	comment
¹⁵ O	5x10 ⁸ * ¹⁹ F(p,αn), LiF pressed powder	To be estimated	Nuclear astropysics
⁹⁴ Kr	4x10 ⁹	4x10 ²	Nuclear structure
109 Y	2x10 ⁵	<10 ²	New discovery at RIKEN
¹¹⁷ Mo	Not available due to low vapor pressure	<10 ³	New discovery at RIKEN
¹³² Sn	9x10 ⁸	2x10 ⁵	Double magic
¹⁴² Xe	1x10 ¹⁰	1x10 ⁴	Symmetry energy
¹⁴⁴ Cs	7x10 ⁸	3x10 ⁴	Nuclear astrophysics

KoRIA user community