

Superconducting Dipole Magnet for SAMURAI

Hiromi SATO SAMURAI Team, RIKEN

2011/03/09-10 SAMURAI Workshop

Requirements

Requirements

- Large field integral --> for high precision momentum analysis
- Large pole gap --> for large vertical acceptance for neutrons
- No coil link --> for large acceptance in the horizontal direction
- Small fringing field --> for detectors around the target region and tracking detectors
- Flexibility --> for various experimental conditions
- Large momentum acceptance --> for heavy fragments and protons in coincidence
- High momentum resolution --> for deuteron-induced reactions

 \checkmark Field Integral 7 Tm (dR/R ~ 1/700 @ 2.3 GeV/c for A/Z=3)

--> mass separation σ_A =0.2 for A=100

- ✓ Large Gap (0.8 m --> vertical ±5 degrees)
- ✓ Large opening (3.4 m --> holizontal ±10 degrees)
- ✓ Small Fringing Field (< 50 gauss @ 50cm from magnet)
- ✓ H-type magnet with cylinder poles (2m in diameter)
- ✓ Magnetic field ... about 3T at center by ~1.9MAT
- ✓ Field clamp
- ✓ Build-in vacuum chamber
- ✓ Rotatable base (from -5 to 95 deg, 0.1deg/sec)

Specification

 Table 1. Parameters of the superconducting dipole magnet.

	value
type	H-type,
	superconducting
number of turns	3411 turns/coil
current	560 A
magnetomotive force	1.9 MAT/coil
current density of coil	$66.0 \mathrm{A/mm^2}$
field at the pole center	3.1 T
(median plane)	
BL integral at 3.1 T	$7.05 \mathrm{Tm}$
maximum magnetic field	5.26 T
in a coil	
inductance	212 H
stored energy	33 MJ
coil inner diameter	2350 mm
outer diameter	2710 mm
cross section	$180{ imes}160~{ m mm}^2$
weight	1783 kg/coil
pole shape	circular
$_{\mathrm{gap}}$	880 mm
diameter	2000 mm
height	500 mm
yoke width	$6700 \mathrm{mm}$
depth	$3500 \mathrm{mm}$
height	$4640 \mathrm{~mm}$
weight	566140 kg

Table 2. Parameters of the superconducting wire.

	value
material	NbTi/Cu
diameter	$3 \ \mathrm{mm} \phi$
Cu/SC ratio	$5.0 \sim 6.0$
insulation	$PVF(\geq 40 \ \mu m)$
filament diameter	${\sim}28~\mu{ m m}\phi$
number of filaments	${\sim}1760$
twist pitch	${\sim}88~{ m mm}$
RRR	≥ 100
critical current at 4.2 K	>4000 A at 3 T
	>3290 A at 4 T
	>2690 A at 5 T
	>2150 A at 6 T

Geometry

Weight: ~600 ton yoke: 567 ton coil with cryostat: 8x2 ton

vacuum chamber: 14 ton

Х

Versatile usage

Magnet can rotate around it's center.

(γ, n) reaction: neutron-rich side

(γ, p) reaction: proton-rich side

pol. *d*-induced reaction

EOS measurement

Flexibility of settings is one of the good properties of SAMURAI.

Magnetic field

Fringing field at detector position

Fringing field on/off median plane

Superconducting coils

Cryocoolers

✓ UP and DOWN independent
 ✓ For 4.2K: GM-JT x4, 3.5W@4.3K
 ✓ For 20K: GM x4, 5W@20K
 ✓ For 80K: GM x4, 45W@40K
 ✓ For current lead: GM x2, 60W@40K

14 cryocoolers are used in total.

Superconducting coil ✓Nb/Ti wire (3mmø) ✓3411 turns/coil ✓Cooled by liquid-He ✓No coil link ✓Cross section: 18x16cm² ✓Outer diameter: 2.71m ✓Inner diameter: 2.35m

coil covered with resin

Cryostat for superconducting coils

Coil circuit (quench protection)

If quench occurs ...

- 1. Quench detector catch the voltage over 1V, 0.5s
- 2. DC cut breaker : ON
- 3. Current flows between the coil and heater
- 4. Additional heater : ON
- 5. Normal region expands
- 6. Stored energy is dumped by the coil
- 7. Tav~100K in 30 seconds

Photos ~magnet construction~

Magnet construction have started in RIBF site.

Rails for rotatable base

Rotatable base with the first layer

Magnet yoke with poles

Coils with cryostats, LHe vessels

Vacuum chamber

NOW

✓ Superconducting dipole magnet for SAMURAI

- ✓ Center field =3T, BL=7Tm
- ✓ Large acceptance
- ✓ Rotatable from -5 to 95 degree
- ✓ The magnet is now constructing.
- Assembling of the main parts have already done.
- ✓ Excitation test will start from April.
- ✓ The construction of the magnet will finish by the end of May.
- ✓ After that, other parts (beam ducts, detectors, etc...) will be set.