HINP16/32C

HINP for RIKEN – March 2011 **Rebecca Shane**

(for Lee Sobotka, Bob Charity, Jon Elson and George Engel)

STU Southern Illinois University Edwardsville VLSI Design Research Laboratory

Nuclear Reactions Group Charity-Sobotka

Si ===> CSAs - Shaper - Peak Sen- DISC

- 1. Chip reference: G.L. Engel et al., NIM A573, 418 (2007)
- 2. Implementation documentation: On request

HINP (REV3) Readout and Acquisition

Area and Power Breakdown

Shaper dominates

Lower-gains need larger shaper Higher gains need larger/different CSA design

Discriminator dominates

Total power ~ 30mW/ch ~ 1W/32ch Air flow or active cooling (in vac) needed.

Si in vacuum Ele. outside

- 1. Initial test system at WU
- 2. Small-scale setup at TAMU (~ 400 ch) dE's external CSA
- **3.** Large-scale setup at MSU (1000-2000 ch) dE's also run in external CSA mode

AT RIKEN Secondary beam \rightarrow target \rightarrow LI +HI tracking \rightarrow SAMURAI \rightarrow proton and HI hodoscopes

Issue: dynamic range, p triggering , keeping HI on scale

Energy Loss in 300 µm Si (69.6 mg/cm²)

	Z	Ion	100 MeV*A	200 MeV*A	350 MeV*A	[dE(Z)-dE(Z-1)]/dE(Z) At 350 MeVA (same
	1	р	0.404 <u>YES</u>	0.250 <u>NO</u> with 300 μm <u>YES</u> with 500 μm	0.186 <u>NO</u> need ext CSA	Trigger with internal CSA
	3	⁶ Li	3.6 [MeV]	2.7 [MeV]	1.65 [MeV]	
	6	^{12}C	14.6	9.1	6.6	30%
	8	¹⁶ O	26.1	16.1	11.7	
	10	²⁰ Ne	40.9	25.4	18.4	19%
	14	²⁸ Si	80.5	49.9	36.3	
	18	⁴⁰ Ar	133.	82.7	60.2	11%
ASI	20	⁴⁰ Ca	164.	102.	74.4	
ange	26	⁵⁶ Fe	277.	173.	126.4	8%
<u>ded r</u>	30	⁶⁴ Zn	368.	231.	168.9	
xten	36	⁸⁶ Kr	526.	333.	244.3	5%
eds e	40	⁹⁰ Zr	645.	411.	302.5	
N	50	¹²⁰ Sn	986.	641.	475.2	3

OPTION A

The "GLAST" Si 1D from Hamamatsu 384 ch, 228 um pitch (overkill)

OPTION B

TTT from Micron (available in 2-sided) 128 ch, 758 um pitch

COMMENT from WU:

Prefer option B for the following reasons:

- 1. Reduces delta e⁻ problem
- 2. Can get 500 µm

(need for p triggering > 150 MeV/A)

3. Perhaps can get with central hole

Table 1 Specifications of the GLAST-Flight-Model SSD

Items	Specifications (units)
Outer dimensions	$89,500 \pm 20 \times 89,500 \pm 20$ (µm ²)
Active area	87,552 × 87,552 (μm ²)
Substrate thickness	410±10 (μm)
Strip pitch	228 (µm)
Number of strips	384
Width of implant-strip	56 (µm)
Width of Al readout electrode	64 (µm)
Resistance of implant-strip	$<30 (k\Omega/cm)$
Resistance of Al readout electrode	<50 (Ω/strip)
Full depletion voltage	<120 (V)
Resistance of isolation resistor (variation within a chip)	50 ± 30 (M Ω)
	$\pm 10 (M\Omega)$
Capacitance of coupling capacitor (at 10 kHz)	>500 (pF)
Leakage current	
$(at V_b = 150 V)$	<500 (nA)
$(at V_b = 200 V)$	<600 (nA)
Bad channel rate (average)	<0.2 (%)
Bad channels allowed in a chip	≤3 (number of strips)

What if these were not exactly 90°? In any event do not need for 1p knockout.

If not, how to "TEE" in other 128 ch

Test rigs at WU and TAMU with existing PCB mounting

We have started to test with the 2D TTT (300 um)

- AREA →97.3 x 97.3 mm
- # strips \rightarrow 128 x 128 \rightarrow 256 per Si, 512 per pair
- Pitch \rightarrow 756 um
- Si type \rightarrow available in both n and p (intrinsic). We have one of each
- Thickness \rightarrow available in both 300 and 500 µm, we have 300 µm.
- pf \rightarrow 300 µm: 0.35 pf/mm² = 26 pf/st; 500 µm: 0.21 pf/mm² = 15.4 pf/st

Si –TTT (WU)

Si in chamber (TAMU)

External view (WU)

Results with TTT at WU

→Energy resolution (80 MeV range) → FWHM_e.(624 keV) ~ 45 keV; FWHM_α ~ 50 keV →Threshold_e. (80 MeV range) → Front ~324 +- 33 [keV]; back ~ 304 +- 63 [keV] These thresholds are a factor of 2-3 better than we could do with the 1.5 mm HiRA Si

ASIC plans

- 1. Extended-range version of HINP (upgrade REV-IV)
 - a) Fix logical error and make time output independent of temp.
 - b) Extended range option with Knee see below
 - c) Move ADC onto CB. (This reduces readout time and eliminates need for VME QDC.)
- 2. Integrate ASIC with vary large dynamic range EXTERNAL CSA. We would then instrument with TWO ASIC channels on single CSA output.

WU Progress and plan

Chip purchase and initial evaluation

- 1. Purchased remaining 288 chips
- 2. Testing completed ~ 80 % tested perfect → will get 225 chips > 3500 ch (many for NSCL and ORNL)

Conversion to VME-USB

- 1. NEW ASIC Control and ACQ software, all tested and working well.
- 2. Full documentation available .

TAMU system generation

All components delivered – ready for beam testing.

WU-SIUE work

Finish simulations of extended-range chip and begin layout The latter will take six months!

WU-RIKEN work

Figure out how to incorporate RIKEN very -large range CSA

Thanks for your attention

EXTRAS

	Tasks - Homework			
1.	Reaction Simulations : RIKEN/TAMU			
	What is channel requirement? Is 750 um pitch OK?			
	When is 5 th plane required?			
2.	Chamber design : RIKEN/TAMU -> Must have similar hardware at RIKEN,TAMU,WU			
3.	TTT Si PCB : WU+MICRON (MICRON but 2 sided, i.e. twice signal for same Eloss)	← I n		
	progress			
4.	GLAST Si PCB : RIKEN (high quality Si, but only one sided) -> Need spice model for Si			
5.	Bonding : TAMU a) FNAL Lenny Spiegel (lenny@FNAL.gov) or b) NSCL John Yurkon			
6.	Design I, I', II and III development :	RIKEN		
	 Two interesting ideas were presented. a) A VERY large dynamic range external discrete CSA → VLDR-CSA. b) A compressional internal CSA. If both worked, could choose which is better for a given experiment 	RIKEN WU+SIUE		
7.	 Design of extended-range HINP with following options: SIUE a) Two-gain (50/175 and 150/400MeV: LINEAR/knee) b) Independent selection of above for Even/Odd channels With all of these features, one generates options similar to II and III but without the need of a VLDR-CSA. 	- In progress		
8.	 With a VLDR-CSA + Comp amp and HINP-IV (with features a, b, and c) one ha a) Run with internal CSA's with knees b) Run with external splitter → 2 HINP channels/strip (eg. Even ch→ high gain, odd ch → low gain.) c) Run with option II (external VLDR CSA+ splitter) → 2 HINP channels (shaper+disc)/strip d) Run with option III (external VLDR CSA+compression) → 1 HINP (shaper+disc)/strip 	s the menu:		
9.	Creation of TAMU system and duplicate at WU	In progress		

Concept Drawing C	Concept Drawing C Vacuum AIR RIKEN - Si with internal conversion (for testing and using with Cable.)
	128 strips/side - 758 um pitch 97.3 x 97.3 mm internal conversion PCB
140.0 mm	128 strips "X"
180.0 nim	• Si ISO-200
	Si Mounting PCB
化化乙酰胺 化化乙酰胺 化化乙酰胺 化化乙酸 化化乙酸 化化乙酸 化乙酸 化乙酸 化乙酸 化乙酸 化乙酸 化乙酸	V-Hi-density connectors FX11LB-140s-SV 140 connectors each pitch 0.5 mm 187.0 mm Si center to flange flat (of ISO cross)

MICRON quote for our Concept design B

MICRON SEMICONDUCTOR LIMITED

Telephone 01903 755252 01903754155 Fax E-mail: direct@micronsemiconductor.co.uk www.micronsemiconductor.co.uk VAT: GB 376 8710-14 Reg. №: 1694255 England

14th June 2010

Texas A&M University 3366 TAMU College Station TX 77843-3366 United States of America

Cyclotron Institute

QUOTATION NO: 6421 VAT No: GB 376 8710-14

For the attention of Dr Livius Trache (979 845 1411 ext 237) Email: I-trache@tamu.edu Subject: RIKEN Experiment

Detector: DSSD TTT2 - 300 Type 2M Project: SAMURAI Harsh Radiation Environment 105 p/cm2/sec 300MeV/ Nuclear/ Heavy Ions 370 MeV/ Nuclear Element range: Oxygen to Tin Requirement: Detection of Ions and Protons

Detector Options

- 1) TTT2 300 Type 2M N Type Silicon (standard) (used on MUST 2/ PAX)
- 2) TTT2 300 Type 2M P-Type Silicon (New) (P Type silicon is considered to be more radiation resistant for protons, no information on Ions - used at GSI)
- 3) TTT4 300 Strip pitch same but interstrip oxide reduced to 30 micron and detector design for thinner window

Package Custom Design

Design will be supplied by Dr. Susanne Walsh (design@micronsemiconductor.co.uk). Concept drawing B (interface to be finalised by Washington University who will be developing the interface electronics). Detector orientation 45 degrees. TTT DSSD 128 strips per side 758 micron pitch. Package 180mm x 200mm Connector: Hi-density FX11 LB - 140s-SV (140 channels/ pitch 0.5 mm)

Detector Design TTT2 (DS) – 300 Type 2M (N-Type) DSSD Double Sided Silicon Detector See Catalogue page 60 / 61 for pictures and details

DC detector: Structure Ion implanted multiquard with Field Plate

1-3 Royal Buildings = MICRON = Marlborough Road LANCING SEMICONDUCTOR Sussex BN15 8SJ UK

- 11 I I I.I.I.

Standard detector N Type Silicon Active area: 97.30 mm x 97.30mm Window: Tpe 2M < 1 micron No. of strips: 256 (128 per side) Strip pitch: 758 micron Strip width: 702 micron Strip length: 96968 micron Thickness: 300 micron Full Depletion (FD) 40V typ, 70 V max Operating voltage FD to FD + 30V Total Current (FD + 30V) (20C) 2uA typical 4uA max Interstrip resistance (ohmic) 100K min, 10M typical Minimum Acceptance level: All channels operational Quality Standard: 2 channels per side permitting with excess currents to the mean value across the detector

Financial

Development of Detector Board for Custom TTT2 detectors to sketch Concept B from Texas A & M Design / CAD/ Physicist Interface/ Engineering to produce 6 working defect free boards for assembly of N Tpe and P Type detectors Interface to 2 x FX11 LB - 140 - SV on each PCB Quantity 6

\$12,000

Note: Detectors cannot be totally checked prior to assembly. Additional assemblies will be needed to deliver a detector to specification.

Supply DSSD Detector with N – Type Silicon TTT2 – 300 on Custom PCB using N Type Silicon	\$11,000
Supply DSSD Detector with P – Type Silicon	\$12,000
TTT2-300 on Custom PCB using P Type Silicon	

\$35,000

Prices: US Dollars, FOB College Station, Texas. Part payment requested for NRE completion and detectors as delivered.

Delivery: 4 - 5 months subject to Design approvals received from Texas A & M

Total Proposal

n