Proton elastic scattering for the study of weakly bound nuclei with SAMURAI

Contents

- 1. Motivation
- 2. Recoil proton spectrometer
- 3. Experiments
 - HIMAC (^{9,10,11}C)
 - GSI (^{66,70}Ni)
 - RIBF $({}^{6,8}\text{He}, {}^{9,11}\text{Li}, {}^{12,14}\text{Be})$
- 5. Experimental setup with SAMURAI
- 6. Summary
 - Y.Matuda Tohoku University SAMURAI work shop March. 09 2011 RIKEN

Collaborators

S.Terashima (GSI) J.Zenihiro (RCNP) H.Sakaguchi (RCNP) H.Otsu (RIKEN) Y.Matsuda (Tohoku Univ.)

<u>RIKEN</u> H.Takeda K.Ozeki K.Yoneda K.Tanaka M.Takechi T.Ohnishi <u>Tohoku Univ.</u> T.Kobayashi

<u>Kyoto Univ.</u> T.Murakami

<u>Miyazaki Univ.</u> Y.Maeda

<u>Souel Univ.</u> Y.Sato <u>RCNP</u> I.Tanihata O.H.Jin

<u>GSI</u> S272 collaborators

<u>NIRS</u> M.Kanazawa

Motivation

Nuclear size and density distribution

- Fundamental properties of nuclei
- Inputs and/or guidelines to describe the nuclear reactions and structures

	Stable nuclei	Unstable nuclei	
Charge radius (Matter radius)	Muonic atom	Isotope shift (Interaction cross section)	
Charge distribution	Electron scattering		
Neutron distribution	Proton elastic scattering	Concerning the d experimetal	ensity distribution, data is rare !!
	 <u>Charge distribution / radius</u> Charge radii are proportional to A^{1/3} The diffuseness is independent of A, <u>Neutron distribution</u> Approximately equal to the proton distribution 	 Matter radius Matter radii have Isospin dependence. Skins arise from differences betwreen S_p and S_n. Halo is caused by the loosely bound nucleon(s). 	

Elastic scattering of Protons with RI beams

V

Stable nuclei

Sakaguchi Group

Polarized proton elastic scattering at 300MeV

 \Rightarrow They have succeeded in extracting neutron density distributions of Sn, Pb isotopes systematically.

2011年3月9日水曜日

Recoil Proton Spectrometer (RPS)

1 m

	Solid H ₂ (SHT)	RDC	$p \varDelta E$	E
material	Para H ₂	Ar+C ₂ H ₆	Plastic	NaI(Tl)
effective area	φ 30 mm	436 x 436 mm ²	440 x 440 mm ²	431.8 x 45.72 mm ²
thickness	1 mm	69.4 mm	2.53 / 3.09 mm	50.8 mm
Resolution		500 µm	TOF : 0.1 nsec	0.3 %(80 MeV)

Para Solid Hydrogen Target (p-SHT)

Ortho/Para H₂

 $\frac{\text{H}_2 \text{ molecular}}{\text{Nuclear spin of two protons}}$ Para H₂ : singlet (S=0, J=0,2,4,...) Ortho H₂ : Triplet (S=1, J=1,3,5,...) 300 K (Normal H₂) para : ortho = 1:3

P.C.Souers, CRYOGENIC HYDROGEN DATA PERTINENT TO MAGNETIC FUSION ENERGY, Lawrence Livermore Laboratory Report UCRL-52628 (1979) Livermore California.
108 : R.W.Hill and B.Schneidmesser, Z.Physik. Chem. Neue Folge 16 (1958).
109 : R.G.Bohn and C.F.Mate, Phys. Rev. B 2 (1970) 2121.

Para Solid hydrogen target (p-SHT)

Para-H₂ concentration

Raman spectroscopy

Experiments of ESPRI

FY2006-2008: ^{9,10,11}C

<u>Heavy Ion Medical Accelerator in Chiba (HIMAC)</u> <u>in National Institute of Radiological Science (NIRS)</u>

FY2009-2010: 66,70Ni

Gesellshaft für Schwerionenforschung (GSI)

Preliminary result

Kinematics correlation ($\theta_{lab.}$ - E_p)

Plane at RIBF

- **1. Weakly bound systemsNeutron rich :** 6,8 He, 9,11 Li, 12,14 BeProton rich : $A \sim 10$
- **2. Modification of shell structure** $A=30\sim50$
- **3. Asymmetric nuclear matter** A=70~100

Combination with SAMURAI

	Sn	S_2n	$E_{x(1st)}$
⁶ He	1.87	0.97	1.80
⁸ He	2.57	2.14	3.10
¹¹ Li	0.33	0.30	_
¹⁴ Be	1.85	1.26	_
⁹ Li	4.06	6.10	2.69
¹² Be	3.17	3.67	2.10

Data: NNDC

Experimental setup

Detectors(we need) -BPC -BDC -FDC 1or2 -HODF

Requests/questions 1. Placement of our equipments near the RPS.

2. Short distance between the RPS and SAMURAI

Experimental setup

		⁶ He	¹⁴ Be
<i>q</i> [fm-1]	T_p [MeV]	$ heta_{\mathrm{fw}}$ [deg.]	$ heta_{\mathrm{fw}}$ [deg.]
1	20	2.9	1.2
2.2	100	6.2	2.6

Field map(TOSCA): Sato san Program(GEANT4): Isobe san

Summary

- We planed a project: Elastic scattering of protons with RI beams (ESPRI).
- We have developed a recoil proton spectrometer (RPS).
 - Experiments: 9,10,11C (HIMAC), 66,70Ni (GSI)
 - The RPS will be ready in FY2011 (RIBF).
- I propose measurements of proton elastic scattering on the neutron rich nuclei: ^{6,8}He, ^{9,11}Li ^{12,14}Be.
 - Momentum transfer: 1 fm⁻¹ to 2 fm⁻¹
 - High statistics
- We request followings:
 - short distance between the RPS and SAMURAI (< 4 m).
 - Machine time (Beam energy: 200 MeV/A, beam intensity: 0.2 Mcps)

```
<sup>6,8</sup>He, <sup>11</sup>Li,<sup>14</sup>Be: 1 day × 4 nuclei = 4 days
```

```
<sup>9</sup>Li,<sup>12</sup>Be: 5 day × 2 nuclei = 10 days
Primary beam <sup>18</sup>O run = 1day
Background run = 1day
Circuit adjustment = 1day
```

Total 17 days

-Equipments: BPC, BDC, FDC, HODOF, circuits, cable,....