

Survey of α cluster resonance in the Ne isotopes

SAMURAI International Workshop 2011/3/9-10

Hideaki Otsu RI Physics lab., RIKEN Nishina Center

1) α cluster resonance on ²⁸Ne

search for the resonance just above the α emission threshold energy of 10.1 MeV

for further description of cluster degree of freedom arise on n-rich nuclei

2) invariant mass measurement by detecting $^{24}O + \alpha$

Using SAMURAI spectrometer which enable us to measure 2 or more particles in coincidence

Large momentum acceptance : $R_{\text{max}}/R_{\text{min}} = 3$

Physics motivation of α cluster resonance

1) α cluster resonance

Ikeda Diagram

Successful description on A=4n nuclei

- (~ 1970)
- 2) Threshold law

 α cluster appears on threshold

A=4n

 α cluster resonance outer than A=4n

1) Cluster state in A= $4n\pm1$

T. Kawabata et al. Phys. Rev. C 70, 034318 (2004), Phys. Lett. B 646, 6 (2007).

 ^{13}C

Milin and Oertzen, Eur. Phys. J. A 14, 295 (2002)

Experimentally, cluster states are successfully observed on nuclei outer than A=4n

2) n-rich region in RIBF

Survey of a cluster resonance in the Ne isotopes

35.4527

S26

P25

Si24 102 ms

0+

Al23

Mg22

Na21 22.49 s 3/2+

Ne20

90.48

F19

1/2+

+4+6-2

32.066

0.001689

Si23

Al22

Mg21

(3/2,5/2)

Na20 447.9 ms

Ne19 17.22 s

F18

16

+3+5-3

Si22

6 ms

0+

Al21

Mg20

Na19

Ne18 1672 ms

F17 64.49 s

5/2+

15

+2+4-4
28.0855

0.00326%

Al 660.2

26.98153

24.3050

0.00350%

Na18

Ne17 109.2 ms

1/2-

Cp,ECc

F16 40 keV

Mg

Si

14

13

Na

+1 22.989770

0.000187%

Ne16 122 keV

F15 1.0 Me

(1/2+)

11

Ne -248.59° -246.08° 228.7°

20.1797

01129

F14

(2-)

S27

ECp,EC2p

P26

20 ms (3+)

Si25

5/2+

Al24 2.053 s 4+

Mg23

3/2+

Na22 2.6019 y 3+

Ne21

3/2+

0.27

F20 11.00 s

ECa

Ср

S28 125 ms

P27

260 ms 1/2+

Si26

Al25 7.183 s 5/2+

Mg24

78.99

Na23

3/2+

Ne22

9.25

F21 4.158

5/2+

O20 13.51 s

N19 0.304 s (1/2-)

> C18 95 ms 0+

B17 5.08 ms (3/2-)

12

ЕСр

 S_{α} tendency at $Z = 8 \sim 14$

1) α separation energy S_{α} tendency at $Z = 8 \sim 14$

2) Z=10 2 dips ~ Double magicity of Z=8, N=8 and N=16

Resonance states above α threshold on Ne isotope are expected in n-rich region, especially on ²⁸Ne

Possible 0^+_2 is expected but not fixed yet.

by P. Fallon

Experimental procedure

1) Invariant mass measurement induced by nuclear break up by C target

$$^{28}\text{Ne} + \text{C} \rightarrow ^{24}\text{O} + \alpha + X$$

$$M_{INV}^{2} = (\Sigma E_{i})^{2} - (\Sigma \vec{p}_{i})^{2}$$

$$E_{x} = M_{INV} - m_{0} ; E_{rel} = M_{INV} - \Sigma m_{i}$$

2) $E_x > 10 \text{ MeV}$: nuclear excitation (by C target) selected

c.f. $S_n = 3.7 \text{ MeV}$

Experimental procedure

1)Invariant mass measurement ${}^{28}\text{Ne} \rightarrow {}^{24}\text{O} + \alpha$ (FDC2) (FDC2)

²⁹Ne \rightarrow ²⁴O + α + n(FDC2²) (NEBULA)

 $({}^{30}\text{Ne} \rightarrow {}^{24}\text{O} + \alpha + n + n)$ (FDC2²) (NEBULA²)

 $M_{INV}^2 = \Sigma (E_i)^2 - \Sigma (p_i)^2$ $E_{rel} = M_{INV} - \Sigma m_i$

2) Every particle ²⁴O, α , *n*: no bound excited states

Feasibility : Yield Estimation

Yield estimation (preliminary) Assumption : $\sigma = 0.05$ mb Target : 200 mg/cm² C : $N_T=1.0\times10^{22}$ Secondary beam intensity ²⁸Ne: $N_I=1\times10^4$ from ⁴⁸Ca 200 pnA

Angular coverage ?= 100 % for $^{24}O + \alpha$

Expected total yield : $Y(1 \text{ days}) \sim = 400 \text{ for } {}^{24}\text{O} + \alpha$

c.f.) Secondary beam intensity ²⁹Ne: $N_{\rm I}$ =5×10² Expected total yield : Y(1days) ~= 6 for ²⁴O + α + n(ϵ_{1n} =30% assumed)

Readiness /

Known difficulties to be solved

1) Readiness :

To be confirmed for feasibility including theoretical point of view

2) FDC1/2 response

EWS 2011

Z=2 particle detection on the circumstance of Z=10 particles

25 times larger pulses w/ beam intensity

FDC2 : spatially separated2 set of HV ?FDC1 : not separatedgive up determining *α* trajectory here ?

Summary

Future perspective

1) α cluster resonance on ²⁸Ne search for the resonance at α threshold energy at $E_x = 10.1$ MeV

for further description of cluster degree of freedom arise on n-rich nuclei

2) invariant mass measurement by detecting $^{24}O + \alpha$ Using SAMURAI spectrometer

which enable us to measure 2 or more particles in coincidence

3) Several experimental parameters should be tuned
4) ²⁹⁻³⁰Ne isotopes are also under consideration neutrons can be also detected in coincidence with ²⁴O+α