

Experiments with Polarized Deuteron Beams at SAMURAI

Kimiko Sekiguchi Department of Physics, Tohoku University

Pol. d beam Experiments at SAMURAI

• pol. *d* beam : $E_d = 500-880$ MeV

$$(p_d = 1.4 \text{ GeV/c} - 2.0 \text{ GeV/c})$$

- Physics Subjects :
 - Study of Three Nucleon Forces via Few Nucleon System
 - *dp* elastic backward scattering
 - *dp* breakup reactions
 - Short-Range Part of the NN Tensor Interactions
 - ³He(*d*,*p*)⁴He
- Observables :
 - Analyzing powers
 - Polarization transfer coefficients (double scattering measurement)
 - etc ...

Three Nucleon Systems

Direct Comparison between Theory and Experiment

• Experiment : Precise Data

- 3N bound state : ³H, ³He
- dp Reactions : $d\sigma/d\Omega$, Spin Observables (A_i, K_{ij}, C_{ij})

Extract fundamental information of Nuclear Forces.

Our interest is Three Nucleon Force (3NF).

Three Nucleon Force (3NF)

1957 Fujita-Miyazawa 3NF Prog. Theor. Phys. 17, 360 (1957)

$\boxed{2}\pi$ -exchange 3NF :

Main Ingredients : Δ -isobar excitations in the intermediate state

Three Nucleon Force (3NF)

1957 Fujita-Miyazawa 3NF Prog. Theor. Phys. 17, 360 (1

[□] more refined 2π -exchange 3NF 1980's ∼

- Tucson-Melbourne (TM)
- Urbana IX etc...
 - Low momentum expansion of πN scattering amplitude
 - Cut-off $\Lambda_{\pi NN}$: fit to B.E. of ³H

3NF Effects in Nuclei

- First Indication of 3NF Effect : ³H (A=3)
- Ab initio calculations for Light Mass Nuclei
 - Green's Function Monte Carlo
 - Ab Initio No-Core Shell Model etc...

- Understanding of 3NF is one key element to describe nuclear phenomena.
- How to constrain the properties of 3NF ?

Three Nucleon Scattering is a good probe to study the dynamical aspects of 3NFs.

- ✓ Momentum dependence
- ✓ Spin dependence
- ✓ Iso-spin dependence : only T=1/2

deuteron-proton scattering

dp elastic backward scattering

 \checkmark At higher energies

• backward scattering shows a new challenge to be solved.

✓ 180° (c.m.) $\Leftrightarrow 0^{\circ}$ (lab.) : a special kinematical condition

• 7 observables realize a complete set measurement

(c.f. a complete set of dp scattering : 23 observables in usual)

- $d\sigma/d\Omega$
- deuteron analyzing powers (T_{20})
- deuteron to deuteron polarization transfer (double scattering experiment)

 \Rightarrow determine the scattering amplitudes

What we are missing ? \sim theory in progress \sim

Further ingredients of 3NF
 φ-ρ and π-ρ exchange 3NF
 many Δ-contributions with π-rings
 e.g. 3π-rings with Δ-isobar excitations (Illinois Model)
 Treatment of Relativistic Effect

Chiral Effective Field Theory

- So far calc. based on χEFT pot. (NNLO) is available below 100 MeV/nucleon.
- in progress : NN at N³LO + 3NF at N²LO for higher energies

First Experiment with pol d. beams at SAMURAI

Measreuement of *dp* backward elastic scattering

- Beam : Polarized deuteron at 250 440 MeV/nucleon
 - Beam Intensity : 1 pnA
- Target : CH₂ (300mg/cm²)
- Detected Particles : proton
 - Kinetic Energy : < 800 MeV (< 1.5 GeV/c)
 - Momentum Ratio *p*(**p**) / *p*(**d** beam) ~1.4
- Measured Angles
 - $0^{\circ}-5^{\circ}(lab.) \Leftrightarrow 180^{\circ}-169^{\circ}$
- Measured observables
 - Deuteron analyzing powers $iT_{11}, T_{20}, T_{21}, T_{22}$
- Required Momentum Resolution : $p/\delta p\gtrsim 1600$
- Angular Resolution : $\delta heta\sim 0.5^\circ$
- Estimated beam time : 4 days

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{lab.}} \sim 2\text{mb/sr}$$

Energy resolution ~1 MeV is required to keep reasonable S/N ratio.

High Resolution Mode of SAMURAI - Q3D mode -

Movable Beam Dump

- W $(3 \text{cm}^{\varphi} \times 20 \text{cm}^{D})$ + Pb $(25 \text{cm}^{\varphi} \times 40 \text{cm}^{D})$
- Volume : 49 m³ (4m^D × $3.5m^{D}$ × $3.5m^{D}$)
- Movable & Rotary

Detector System

- Multi-wire drift chamber (70cmW × 120 cmH)
- Plastic scintillator hodoscope
 - to cover $dP/P = \pm 3\%$

In experiments with polarized deuteron beams high momentum resolution $p/\Delta p \sim 1600$ for 1.5 GeV/c proton

is required.

The triplet Q-magnets STQ25 are served as as a analyzer magnet in conjunction with the SAMURAI dipole magnet.

- Dispersion : 2.2m
- Bending Angle : 53.6°
- Magnification
 - •(x|x) = 0.43, (y|y) = -14.2
 - •Angular acceptance
 - •(h,v)=(± 20 mrad, ± 90 mrad)
- Momentum Resolusion : $p/\Delta p \sim 3000$

(by OPTRACE)

Beam Dump for deuteron beam

Movable Beam Dump

- W (3cm^{\(\phi\)}×20cm^D) + Pb(25cm^{\(\phi\)}×40cm^D) for stopping *d* beams,
 & Concrete Blocks for emitted neutrons
- Volume : 49 m³ (4m^D ×3.5m^D ×3.5m^D)
- Movable & Rotary Drive : Air Bearing (which moves a heavy load with air power)

Summary

- Physics Subjects of Pol.d beam experiment at SAMURAI
 - Study of Three Nucleon Forces via Few Nucleon System
 - *dp* elastic backward scattering
 - *dp* breakup reactions
- Pol.d beam experiment is performed with the high resolution mode of SAMURAI.
- First experiment at SAMURAI
 - Measurement of deuteron analyzing powers for *dp* elastic backward scattering