CNS Active Target Project

Takashi Hashimoto CNS, University of Tokyo

Collaborators

CNS active target project core member T. Hashimoto, S. Ota, H. Yamaguchi, S. Michimasa, T. Gunji, H. Tokieda, T. Uesaka, H. Hamagaki, S. Kubono

GEM – MSTPC

S. Hayakawa, D. M. Kahl (CNS) H. Ishiyama, Y. Hirayama, N.Imai, Y. Watanabe, S. C. Jeong, H. Miyatake (KEK) K. Yamaguchi, T. Komatsubara (Univ. of Tsukuba) Y. Mizoi, T. Fukuda (Osaka Electro – Communication Univ.) T. Yamada, N. Iwasa (Tohoku Univ.) T. Teranishi (Kyushu Univ.) S. Cherubini (INFN Catania)

CAT

H. Matsubara, M. Dozono, Y. Kikuchi (CNS) T. Isobe, H. Otsu (RIKEN) A. Ozawa, H. Suzuki, D. Nagae, T. Moriguchi, Y. Ito, Y. Ishibashi , H. Ohishi, T. Abe (Univ. of Tsukuba) T. Kawabata (Kyoto Univ.) Y. Maeda (Miyazaki Univ.)

Collaboration

CNS, the University of Tokyo

RIKEN KEK Kyoto Univ. Univ. of Tsukuba Miyazaki Univ. Tohoku Univ. Kyushu Univ. **INFN** (Test experiment, Potential users) **MSU** (Technical collaboration about a electron amplifier)

Two types of Active target are constructed Left (GEM – MSTPC): A = 1 - 50, $E \sim 10$ MeV/u, $I < 10^6$ pps Right (CAT): A = 50 - 80, $E \sim 100 - 300$ MeV/u, $I = 10^{6\sim7}$ pps Both can be irradiated with high intensity HI beam GEM – MSTPC Multiple – Sampling and Tracking Proportional Chamber with Gas Electron Multiplier

GEM-MSTPC Multiple Sampling and Tracking Proportional Chamber with Gas Electron Multiplier

Re G
 G
 Advantages and merits
 1. The gas in the chamber serves as an active target.

 -> The solid angle is 4π and detection efficiency is about 100%.

 H
 2. The MSTPC can measure 3D trajectories and dE/dx along their trajectrories.

 -> It serves a sufficient target thickness without losing any information.
 The identification of the reaction is clearly performed.

High beam injection rate capability

Measurement of the injection beam rate dependence of the detector response beam : ${}^{11}B$, 6 MeV, 500 pps – 420 kpps, diameter: $1mm^{\phi}$ Gas: He + CO₂ (10%), 120 torr

The energy and position resolution do not depend on beam injection rate. These results satisfied our requirements

Beam injection rate dependence of drift velocity

The position distortion of drift direction can be corrected by the beam line detectors

The GEM – MSTPC can be used to our experiment with the satisfied performances

CAT CNS Active Target

Missing Mass Spectroscopy with RI beams

Nuclear structure

Inelastic scattering, Gamow – Teller, Transfer ...

Giant resonance: Incompressibility

Isoscaler/Isovector monopole

Spin (S) –Isospin (T) selectivities				
Gamow – Tell Fermi : Isoscaler mon	er: $\Delta L = 0, \Delta S = 1, \Delta'$ $\Delta L = 0, \Delta S = 0, \Delta'$ opole: $\Delta L = 0, \Delta S = 0, \Delta$	$A = 0, \Delta S = 1, \Delta T = 1$ $A = 0, \Delta S = 0, \Delta T = 1$ $A = 0, \Delta S = 0, \Delta T = 0$		
	$\Delta S = O$	$\Delta S = 1$		
$\Delta \mathbf{T} = 0$	$\Delta \mathbf{S} = 0$ $(p,p'), (d,d'), (\boldsymbol{\alpha},\boldsymbol{\alpha'})$	$\Delta \mathbf{S} = 1$ $(p,p'), (d,d')$		

(d, ²He) reaction to extract β^+ strength in the pf – shell region α inelastic scattering to pin down monopole strengths

in inverse kinematics

Kinematical condition

⁴He(⁵⁶Ni, ⁵⁶Ni)⁴He @ 200 MeV/u

- Recoil angle is large enough to measure.
- Recoil energy is very low, less than 1 MeV for forward angle scattering

An " active" target is needed to measure the forward angle scattering!

Requirements High beam injection capability: >10⁶ pps Angler resolution : < 7.5 mrad → Position resolution: < 1 mm Energy resolution : <10%

In order to achieve these requirements, space charge effect has to be removed **as possible**

$CAT \ {\rm CNS} \ {\rm Active} \ {\rm Target}$

Basic performances of CAT

At 12UD Tandem accelerator of Univ. of Tsukuba Beam: ⁴He, 30 MeV, 100 pps, diameter: 1mm^{φ} Gas: He +CO₂ (5%), 1 atm

Less than 700 μm

Less than 100 μ m

Energy resolution 9%

Beam test w/ d_2 + CO₂ (5%) at HIMAC

Heavy Ion Medical Accelerator in Chiba

Beam: 56 Fe, 250 MeV/u Gas: d₂ + CO₂ (5%), 1 atm

- GEMs were operated online w/ d₂ gas for the first time
- CAT worked with 10⁶ pps HI beam irradiated between the cages
- Particle tracks were observed successfully (even though the particle may not be light particle)

Summary

We constructed two types active target detectors.

Basic performances

	GEM - MSTPC	САТ
Beam	active	inactive
Electron amplifier	TGEM	GEM
Position resolution (mm)	1.7 mm (x), 2.2 mm (y, distortion), 4.2 mm (z, pad size)	0.7 mm (x, z. 16.45 mm step), 0.1 mm (y)
Energy resolution (%)	8%	9%
beam injection capability (pps)	< 10 ⁶	>10 ⁶
Merit and demerit	All charged particles can be measured	Good position resolutions
	The position resolutions are worse than the CAT	It needs external monitor to measure beam like particles

Both can be irradiated with high intensity HI beam

Present status

GEM – MSTPC

The measurement of 18 Ne(α , p) 21 Na reaction have been performed. The experiment have been finished successfully.

 \rightarrow Reaction events are observed.

CAT

It worked with 10⁶ pps HI beam irradiated between the cages.

Precise analysis of these experiments is in progress.

In the next FY

GEM – MSTPC

Measurement of the β – delayed α decay of ¹⁶N will be performed. (after a gating grid system installation.)

Measurement of the d(⁵⁶Ni, ⁵⁶Co)²He reaction will be performed. It is first physics run of the CAT