Probing neutron halo structure of ⁶He nucleus by the measurement of π meson

TadaAki Isobe, RIKEN Nishina Center SAMURAI Workshop March 10th, 2011

work with H. Sakurai and S. Hirenzaki

Contents

- Physics motivation
- > π meson as a probe of halo nucleus
- Experiment at RIBF-SAMURAI
- Summary

π meson as new probe for RI ~~ sensitive to isospin ~~

- If proton is target:
- π^0 is good probe for neutron matter (surface).
 - $\sigma(p+n \rightarrow \pi^0 + X)$: $\sigma(p+p \rightarrow \pi^0 + X) = 4:1$ according to brief calculation.
 - Only the effect from isospin restriction is taken into account.
 - $\sigma(p+n \rightarrow \pi^0 + X)$: $\sigma(p+p \rightarrow \pi^0 + X) = 20:1$ according to experimental data.
 - Detected π^0 can be treated as coming from p+n collisions.
- π^+ is good probe for proton matter (surface).
 - $\sigma(p+n \rightarrow \pi^+ + X)$: $\sigma(p+p \rightarrow \pi^+ + X) = 1:5$
 - Phys. Rev. C 20 (1979) 1332
- Note: nuclear absorption in nucleus has to be taken into account.

Physics Motivation

- To study the dineutron correlation bounded in various halo nucleus.
 - core + two neutron haloes is major model to describe experimental data.
 - ⁶He, ¹¹Li are first target nuclei.
- Laser spectroscopy of ⁶He gave us strong information for its structure.
 - PRL 93 (2004) 142501
- Spacial dineutron correlation in ¹¹Li was indicated through the measurement of E1 excitation in Coulomb dissociation.
 - PRL 96 (2006) 252502
 - The existence of a virtual s state in the residual ¹⁰Li nucleus is expected in Coulomb break up.
 - PRC 80 (2009) 031301
- New probe for the study of such exotic state is necessary to understand the dineutron correlation.

Distance between neutron haloes in ⁶He.

- Distance between two neutron haloes in ⁶He can be estimated based on the matter radius and charge radius.
 - Model: core + two neutron haloes.
 - Core nucleus is assumed to be intact.
- Information of dineutron correlation will give the information for core nucleus in halo nucleus.

I. Tanihata, Halo2010

	Experiment [fm]	3-body. [fm]	Varga [fm]	Esbensen [fm]	Funada [fm]	Zhulov [fm]
$< r_m^2 > ^{1/2}$	2.43±0.03	2.48	2.46			2.45
$< r_m^2 > \frac{1/2}{(r_p^2)^{1/2}} < r_p^2 > \frac{1/2}{(r_p^2)^{1/2}} < r_n^2 > \frac{1/2}{(r_p^2)^{1/2}}$	1.912 ± 0.018		1.80			
$< r_n^2 > ^{1/2}$	2.65±0.04		2.67			
$<\mathbf{r}_{n}^{2}>^{1/2}-<\mathbf{r}_{p}^{2}>^{1/2}$	0.808 ± 0.047		0.87			
$< r_{2n}^{2} > ^{1/2}$	3.23±0.07		3.42			
$< r_{\alpha-2n}^{2} > ^{1/2}$	3.84±0.06	3.606		3.592(3.63)	3.51	3.54
$< r_{n-n}^{2} > ^{1/2}$	3.93±0.25	4.762		5.413(4.62)	4.55	4.58
$< \mathbf{r}_{n1} \mathbf{r}_{n2} > [fm^2]$	2.70±0.97	0.110		-1.59(0.54)	0.292	0.325

5

π meson as a probe of halo nucleus

- > π meson is expected to be useful as new probe for halo nucleus.
 - Large momentum transfer is necessary for the production.
- Its production sensitive to the spacial information among neutron haloes and core nucleus.
 - Wave-function of neutrons are overlapped.
 - π production kinematics is expected be dramatically changed in the case of p+{2n} comparing with p+n.
 - Especially around threshold energy for π production.

Theoretical calculation of π meson production in ⁶He+p.

- T-Matrix accounts for overlapping of wave-function of dineutron.
- Nomentum spectra of produced π meson is evaluated.
 - High-momentum π meson strongly depends on spacial correlation.
 - High intensity beam is necessary.

a

If the core of ⁶He is not intact.

Idea on the experiment

- Measure the π mesons produced in N+{neutron halos} collisions.
 - Measurement of neutral π meson will avoid the systematic error from Coulomb effect.
- Events where target nucleon hits the haloes have to be identified somehow.
 - Identify the spectator of collision using spectrometer.
- In addition to ⁶He+N, experiment of ¹¹Be+N is expected to be necessary as reference data of n+N process in A+N system.

Experimental setup

- Measure the π mesons produced at liq. H₂ target.
 - Use $\pi^0 \rightarrow 2\gamma$ decay mode.
 - Calorimeter for γ .
- Events (spectator) will be characterize with following spectrometer.
 - →SAMURAI

SAMURAI for the identification of spectator

- Due to the Fermi motion of spectator, a large acceptance spectrometer is necessary.
- Identify ⁴He and ⁶He.

Electromagnetic Calorimeter for the measurement of gamma from π^0

Electromagnetic calorimeter has to be developed.

• To measure ~100MeV gamma from π^0 s.

Combination of multiple Nal scintillator is planned.
Pure Csl is better for the experiment with higher rate beam.

Summary

- > π meson is useful as a probe for the dineutron correlation in halo nucleus.
- SAMURAI spectrometer is necessary to perform the experiment at RIBF.
 - For the identification of spectator.
- Establish the experimental method though the study of ⁶He.
- Experimental study of ¹¹Li is interesting, since ⁹Li in ¹¹Li might not be intact.
- Correlation between four neutrons in ⁸He would be probed.