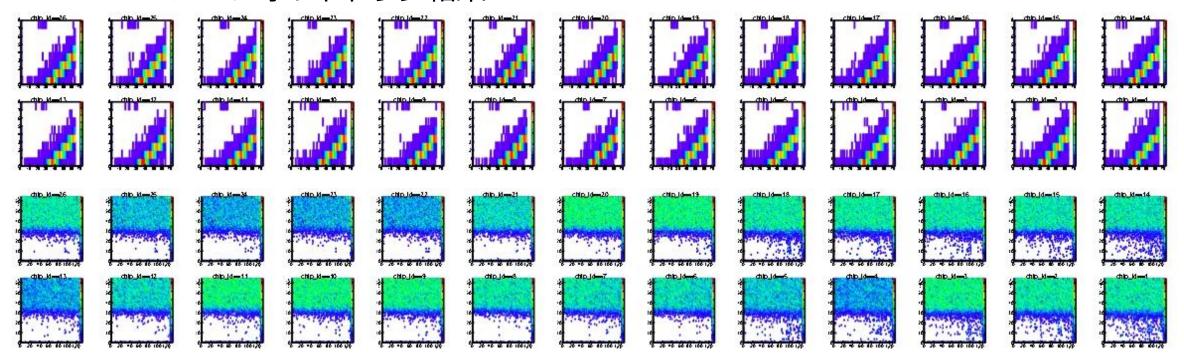


宇宙線測定@奈良女

奈良女M2 並本ゆみか

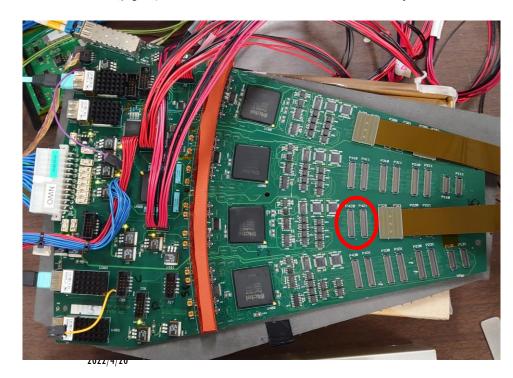
2022/4/20


INTT JP MT

概要

- ●昨年12月にINTT用シリコンセンサーの検出効率測定のため、東北大でビームテストを行った
- ●検出効率とは:センサー自身が、通過した放射線のうちどれだけの割合を検出できるか
- ●ビームテスト時、台湾で製造されたセンサーラダーが不調で使えなかった
 - ●このラダーの検出効率を測定する必要がある
 - ●宇宙線を用いて、検出効率測定を行っている

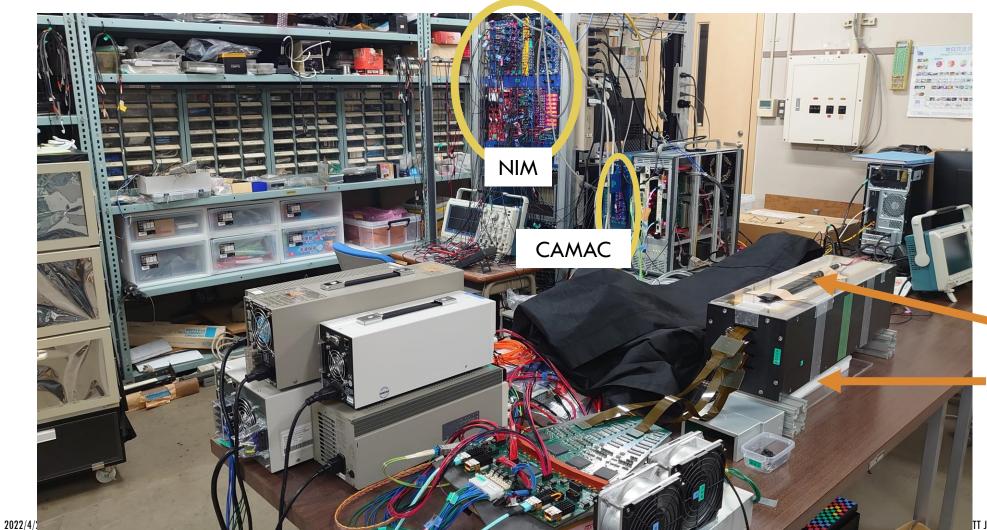
台湾ラダーの不調


●ビームテスト時のキャリブ結果

2022/4/20 INTT JP MT 3

宇宙線測定準備

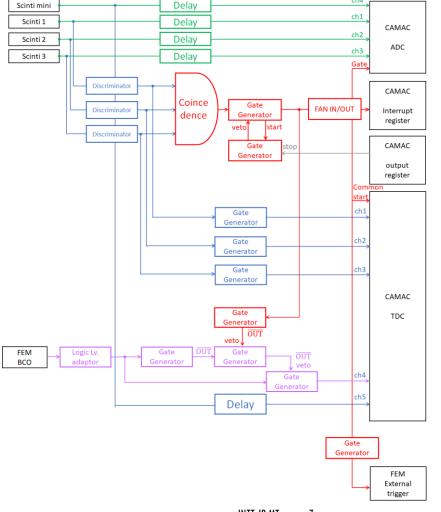
- ●奈良女テストベンチでは、ROCのC3にラダーを接続していないと宇宙線、 線源測定ができない
 - ●使用していたROCのC3が壊れたため、C3を使わない測定方法を蜂谷先生と模索した



宇宙線測定準備

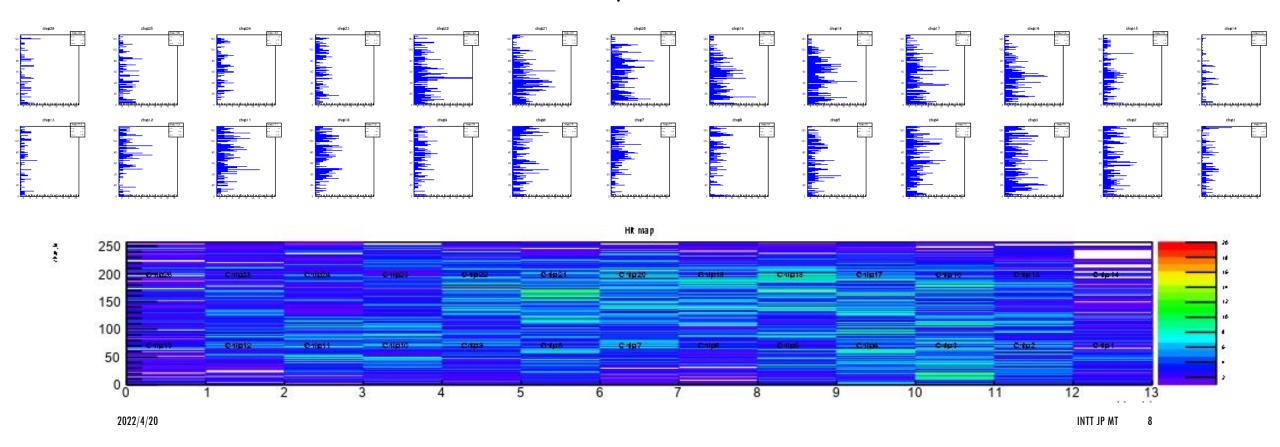
- 大前提: FEMはROCポートAO,AI,A2,A3…CO,CI,C2,C3…という区別はできない
- ●0,1,2,3という"列"の区別と、ファイバーがFEM top, bottomの どちらにつながっているかで8通りの区別をしている
- ●現況: bottomの3がトリガーになるよう設定されている
- ●A→top, C→bottom だったファイバーを A→bottom, C→top に入れ替え、A3がトリガーになるよう変更した
- ファイバーの入れ替えではなく、FPGAコードの書き換えによりトリガーを変更しようとしたが、FEMとの通信がうまくいっていない

宇宙線測定のセットアップ



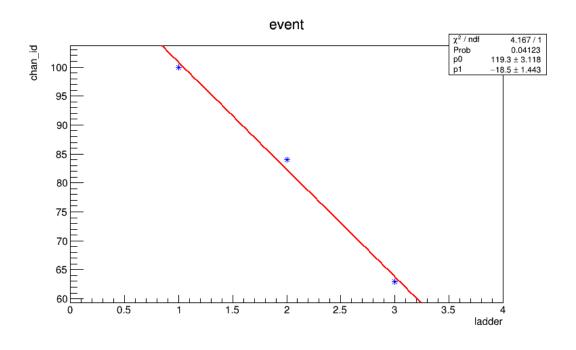
シンチレーション カウンター

宇宙線測定のセットアップ


- ●ラダーの入った暗箱の上下にシンチを配置している
 - ●暗箱下部のシンチの配置はかなりざっくり
- ●シンチ2本のcoincidenceを外部トリガーとする

- ●NIM, CAMAC回路はビームテスト時とほぼ変わらず
- ●変更点: シンチの数、coincidenceのタイミング

宇宙線測定結果


●シンチの配置がざっくりなため、chip1,14や13,26のエントリーが少ない

宇宙線測定結果

- ●ラダーは上流からTaiwan(module6)、L5(module5)、L6(module4)
- ●Event I O-I 2の飛跡を結んでみた

***	*****	* *	*****	**>	*****	(*)	*****	*	******	(*)	*****	**	*****
*	Row	*	adc	*	chip_id	*	chan_id	*	module	*	bco	*	event *

*	0	*	3	*	7	*	108	*	-1	*	0	*	0 *
*	1	*	0	*	19	*	123	*	5	*	0	*	1 *
*	2	*	3	*	19	*	124	*	5	*	0	*	2 *
*	3	*	3	*	20	*	108	*	6	*	0	*	3 *
*	4	*	0	*	19	*	125	*	5	*	0	*	4 *
*	5	*	3	*	7	*	108	*	4	*	45	*	5 *
*	6	*	0	*	19	*	123	*	5	*	45	*	6 *
*	7	*	3	*	19	*	124	*	5	*	45	*	7 *
*	8	*	3	*	20	*	108	*	6	*	45	*	8 *
*	0	*	0	*	10	*	125	*	5	*	45	*	<u>0</u> *
*	10		2		4		63		4		125		10 *
*	11		2		3		100		6		125		11 *
*	12		2		3		84		5		125		12 *
*	13	*	4	*	23	*	89	*	4	*	65	*	13 *
*	14	*	3	*	22	*	58	*	5	*	65	*	14 *
*	15	*	2	*	22	*	38	*	6	*	65	*	15 *
*	16	*	4	*	23	*	89	*	4	*	66	*	16 *
*	17	*	3	*	22	*	58	*	5	*	66	*	17 *
*	18	*	2	*	22	*	38	*	6	*	66	*	18 *
	10		7		10		0.4				0.4		10

2022/4/20

今後の予定

●宇宙線測定回路のvetoを見直す

- ●宇宙線測定結果を解析し、
 - ●飛跡が結べるデータの割合
 - ●DSEの割合

などを調べる

●ビームテストの解析を行う

2022/4/20