Development of INTT Conversion Cable Using **µ-Coaxial Cable** Technology

RIKEN/RBRC Itaru Nakagawa for INTT Team

FVTX

- Disk Type
- 4 Layers
- Silicon Strip Sensors
- 1M Channels
- FPHX Readout Chip
- FPHX-ROC-FEM-DCM-II

Barrel Type

- 2 layers
- Silicon Strip Sensors

INTT

- 37k channels
- FPHX Readout Chip
- FPHX-ROC-FELIX

Technical Challenge ~ INTT Readout Cable ~ ROC Conversion Cable Bus-Extender Bus-Extender Conversion Cable

INTT Readout Cable Chain

Signal Transmission Performance

Insertion Loss Limit

Technology Choices

FFC option as a bus–extender for the beam test

- Consider FFC (Flexible Flat Cable) for the beam test
 - This is a test of option B for the INTT bus-extender

• Impedance controlled FFC ~1m

- Impedance controlled FFC ~1m
- 500um pitch 50lines: Need 4 FFCs for 200lines
 - Cable width = 2.5cm
 - It is cheap and available in the market
 - Less-dense, larger size, heavyer

Conversion board

- Convert the connector types and make the density less
- Rigid PCB w/ impedance control
- Small size (5x5cm)
- 7 layers same as FVTX bus-extender (2 signal layers, 3 solid layers, 2 surface)

Flexible Print Cable (FPC)
Flat Flexible Cable (FFC)
Micro-Coaxial Cable (MCC)

	FPC	FFC	МСС	
Line Pitch [um]	60	500	250	
Shield	Shielded	Not Shielded	Shielded	
Flexibility	2D	2D	3D	

Advantage in the flexibility

Down

 \bigcirc No flexibility in left/right resulted in multiple different designs → 2 D flexibility

Micro-coaxial cable

⇒ Flexible in 3 dimensions and thus only 1 simple design cable can connect any ROC port. → 3D flexibility
⇒ All cables can be made in 1 single length.

Micro-Coaxial Cable

Industry-leading small and thin connectors

Connector for Micro Coaxial Cable

Grounding of PCB Side Connectors

Each series also provided with a ground terminal, metal shell cover and the bottom shell cover is has become a form surrounding the connector, we have to ensure the noise measures and product strength.

Down sizing Anti-noise measures Reliability Flexibility Twist durability

This series of connectors provide best solution for those who face some challenges in downsizing, anti-noise measures, and reliability, as well as those seeking for a cable with superior flexibility and twist durability.

Micro Coaxial Cable Structure

In spite of the extremely thin cable, one by one has become in coaxial structure, and excellent transmission characteristics. Has a high flexibility and twist durability, repeated bending, is the cable that was blessed with strong features to twisting.

https://www.kel.jp/feature/coaxial_lp_1

Factor of 2 to 3 larger cross section compared to FPC. Things are not complicated, but the signal attenuation can be expected to be relaxed intuitively.

m-Coax Conversion Cable Protoype-I

Delivered in December, 2021

µ-Coax Conversion Cable Prototype-I

Performance Check

• After some iteration between Hayashi-REPIC to fix mixed up channels, we confirmed satisfactory data taking.

Bus Extender + Conversion Cable Chain

2021/8/4 1.3m Bus Extender + FPC Conversion Cable

2022/2/211.1m Bus Extender + μ -Coax Conversion Cable

Insertion Loss

OK, the insertion loss is moderate than FPC as intuitively expected.

µ-Coax Cable Structure and Material

Item		Unit	Specified Value	_
Inner conductor	Material		Silver plated Copper Alloy wire	
	AWG size		44	
	Stranding	No./mm	7/0.02	
	Dia (annrox)	mm	0.06	
Insulation	Material	-	PFA	
	Thick.(nom.)	mm	0.037	
	Dia. (approx.)	mm	0.134	
	Color		Black	
Outer Conductor	Material		Tinned copper alloy wire	
	Туре	-	Wrap(Right-hand lay)	
	Strand Dia. (approx.)	mm	0.02	
Jacket	Material	-	PFA	
	Thick.(nom.)	mm	0.025	
	Dia. (Max.)	mm	0.22(0.23)	
	Color	-	Brown , Green	

PTFE 化学式

PFA(フッ素樹脂)=**パーフルオロアルコキシアルカン** 四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂

http://www.diced.jp/~KAZU/syousya.txt.htm ¹⁸

Radiation Hardness of Fluoropolymer

https://www.osti.gov/servlets/purl/1467983

mild to moderate damage, utility is often satisfactory moderate to severe damage, use not recommended

In general, fluoropolymer is known to to be weak against the radiation

Radiation Test of μ -Coax

RIKEN Accelerator-driven compact Neutron Source: RANS

View from Upstream

View from Downstream

Beam Time for FoCAL@ALICE project in March 3-4, 2022. (10 hours)

2

21

Disk Mount Setup with FoCAL Sensors

Irradiated 9 hours total. Total Neutron Flux = 1.7×10^{13} neutrons

To be checked its performance afterword

INTT Production Schedule

Due to the supply chain crisis these days, KEL's lead time is at least 6 months. This is not gonna fit with out INTT construction schedule.

Alternative μ -Coax Model_{CABLINE -UX II}

Market Share of I-PEX μ -Coax Product

I-PEX Dominates world's market

Catching Up Schedule, but …

Factory is in Shenzhen

March 2022

Still unclear if we can be in time …

Summary

- The conversion cable was re-designed with $\mu\text{-}coax$ cable technology from FPC.
- The prototype-I demonstrated reasonable performance compared to FPC.
- Radiation test is ongoing.
- Switched the model from KEL's XSL to IPEX's UX-II to avoid severe delay of the mass production.

backup

The reason of XSL(KEL) as the first choise

by I-PEX was too coarse

- 1. It was used in E16 experiment at J-Parc and survives radiation (7.2Gray)
- 2. Fabrication experience of connector boards in Hayashi Repic.
- 3. Free samples were available.
- 4. KEL was willing to provide detailed signal transmission performance data.

Prototype-I Cable Setup

Indium foil for absolute neutron flux measurement

Attached to the disk (Front View)

Attached to the disk (Back View)

Radiation Damage

After

No visible damage is observed after the irradiation.

Summary

- Prototype-I $\mu\text{-}coax$ conversion cable was irradiated for 1.7×10^{13} neutrons.
- No obvious damage has been observed after the irradiation at least visibly.
- The prototype-I cable is planned to be taken out from the radiation area and be tested again its performances.
 - sParameter and TDR in TIRI (April)
 - Stability data acquisition test with 1.1m BEX + $\mu\text{-}Coax$ at RIKEN (March ~ April)

Radioactivity Measurements

- March 4th : End of Neutron Exposure
- March 14th : 2.6 kcpm
- April 8th : 370 cpm

Requirement < 100 cpm

Another $1 \sim 2$ weeks before we can take the prototype-I out of RANS experimental site.

いつまでも管理区域内に安置でき ない。ケーブルの材質の材質毎に 放射化については調べてください との要請が来ています。

sParameter Comparison

Specification Comparison (Executive Summary)

High Frequency Signal Transmission Performance @400MHz

	FPC		KEL XSL				IPEX UX-II
Length [cm]	20	40	10	10	20	30	50
AWG	N/A	N/A	46		44		44
Impedance $[\Omega]$	50	50	50		45 ± 3		50
Diff Impedance $[\Omega]$	110	110	93		83		
Insertion Loss [%]	80	56	84	90	84	80	88
Return Loss [%]	10	20	25		18		3
Cross Talk [%]	<12*		1				
Eye Diagram	similar		similar				

*20cm conversion cable with bus extender

There is no data available for the exactly same condition between FPC and µCoax cables. Presumably 20cm FPC can be compared to XSL-AWG46-10cm and XSL-AWG44-20cm. Resulting performances look similar within 20cm. To be executed actual measurement once prototype is made. Hard to extrapolate the performance to 1.41m, need to wait for the actual measurement.