Status report on RHICf, FoCal, RANS test, etc.

RBRC exp group meeting May 17, 2022 Yuji Goto

RHICf results

- π^0 asymmetry
 - Phys.Rev.Lett. 124 (2020) 252501
 - Comparison with high $p_T > 0.5$ GeV/c data of the past experiments
 - Nearly the same large asymmetry is reached at low $p_T < 0.2 \text{ GeV}/c$
 - Contribution of other mechanisms, diffraction and resonance, may provide a hint to the mystery
- STAR comparison
 - Phys.Rev.D 103 (2021) 092009
 - √s = 200 GeV & 500 GeV
 - Forward $\pi^{0},\,2.7<\eta<4.0$
- Significant part of the (isolated) π^0 are from diffractive processes?

RHICf results

- Neutron asymmetry
 - Preliminary result
 - A_N increases in magnitude with p_T up to 1 GeV/*c* at high x_F
 - Clear x_F dependence at high p_T
- Photon spectrum
 - arXiv:2203.1541 [hep-ex]
 - Comparison with LHCf photon results
 - First confirmation of collisionenergy scaling at zero degree photons

RHICf-II proposal

- We proposed a second run for RHICf in 2024 (RHICf-II)
- RHICf-II Lol was discussed by the PAC in 2020.9
 - Parasitic beam-time
- We're collaborating with ALICE-FoCal group to use the FoCal-E technology
 - 8cm x 18cm detector
 - Kakenhi-Kiban-A (2021-2024) + RIKEN budget
 - The detector have enough radiation hardness to work for a small β* and normal luminosity

RHICf-II physics

- K_{S}^{0} & Λ asymmetry measurement
 - Expected statistical uncertainty of asymmetry measurements for π^0 , $K^0{}_S$, and Λ compared to the RHICf (Run17) π^0 assuming the similar luminosity
 - BRAHMS comparison
 - To understand the forward hadron production mechanism

Forward identified particles at BRAHMS

RHICf-II physics

- $K_{S}^{0} \& \Lambda$ spectrum measurement
 - Impact on air-shower development
 - Muon excess issue
 - Cosmic neutrino background
 - For accelerator neutrino physics, too (FASER, SND)

6

STAR Spin/Cold-QCD PWG

- 2022.1.26
- ZDC performance issue
 - 9 o'clock blue-beam Snake failure
 - Luminosity measurement
 - Local polarimeter performance
- Peoplepower issue
 - BNL peoplepower necessary for installation and safety
- DAQ requirement
- Available space
- List of tasks
 - Simulation tasks

Conclusion

- 2022.4.8: Decision by the STAR management
 - They cannot accept the RHICf-II proposal.
 - The main reason is the lack of human resources.
- 2022.4.22: NPP meeting
 - Last discussion to avoid losing the RHICf-II physics for understanding the forward hadron production mechanism
 - Diffractive process
 - Air-shower development & cosmic neutrino background
 - No way to cover the lack of human resources
 - Minimum two FTE necessary, mechanical engineer and technician who understand the complex system of STAR
 - No way to obtain them from outside

Conclusion

- RHICf-I data analysis will continue
 - Combined analysis with STAR detectors
 - Event type categorization
 - Diffraction + resonance tagging with STAR + RHICf
 - Joint meeting to be held in the near future

FoCal activities

- RANS irradiation test
- Temperature dependence test @ NWU
- CERN-PS test beam
- FoCal-E pad trigger and readout scheme

March 3 (Thu) - 4 (Fri)

- \bullet RANS 7MeV proton beam up to 40 μA
 - Neutron irradiation from Be target

Mar. 4 5.99 hours in total

March 3 (Thu) - 4 (Fri)

- Tested
 - FoCal-E pad
 - p-type 1x1 baby chip
 - p-type monitor PD
 - n-type monitor PD
 - P-type 2x2 baby chip
 - APD
 - by Yamazaki & Shimizu
 - sPHENIX-INTT cable
 - by Nakagawa
- Monitored by
 - Monitor PD
 - from Kyushu Univ.
 - Indium foil
 - Thermistor

Neutron fluence analysis

- Estimation with Indium foil
 - by Shimizu-san
 - In Run1, 1092 s, 32.85 μ A average
 - 336 keV γ -ray measured by Ge detector

Status

- Residual radiation levels are still too high to take all out of the area.
- We have disassembled the setups and identify items with high radiation levels.
 - 4/8: board #4 60 cpm \rightarrow took outside
 - Sent to NWU for the I-V measurement
 - 4/13: board #2 & #3, rod+box 80cpm \rightarrow took outside
 - 4/28: board #5 & #6 70cpm \rightarrow took outside
 - INTT micro-coax cable, APD, board #1 still in the area
 - To be checked again in this week
- Inaba-san is working on the analysis of the online measurement data and continuing I-V and C-V measurement

RANS irradiation test

13/20

- Monitor PD, baby chips were used

• 16:42:29

* 12:17:41

16:01:21

0

- irradiated ~1014 neutron /cm2 in two days
- Future: IV, CV test, components irradiation test

p-type

PCBs with sensors

(M. Inaba)

Slide by T. Chujo

What we have learned

- Neutron fluence was 10 times higher than expected by some miscalculations. The distance dependence from the target was smaller than expected.
 - Good to be able to confirm by simulation calculation
- It would be good to create a system using MPD as an online monitor of irradiation doses.
 - It would be good to collaborate with RANS to develop such a system, which can be offered to other users.
- Since the indium foil irradiation measurement is performed under high radiation dose, it is necessary to devise a way to mount and dismount the foil in a short period of time.
 - The amount of irradiation (time) and the number of sheets at a time should be considered, taking into account the measurement time with the Ge detector.
- Online measurements provided very useful data. We hope to succeed next time with the measurements we were not able to make this time.

Temp. dep. of I/V for p-type sensor

- I/V curves for 2x2 and 1x1 babies have been measured at Nara Women's Univ. before the irradiation.
- Initial measurements after irradiation was done (April, 2022)

(M. Hata, T. Hachiya, M. Shimomura)

Slide by T. Chujo

14/20

FoCal PS/ SPS test beam in 2022

- · June @ PS (dedicated for PAD (HCal))
- September @ SPS (all subsystems
- November @ SPS (all subsystems)

FoCal-E

- ·18 single pad, and 2 pixel layers
- \bullet PAD: HGCROC for PAD w/ aggregator board and O² (FLP and CRU) system
- PIXEL: under repair of damaged half-layers. Another option is old prototype (mTower with 8 ALPIDEs)

FoCal-H

- 9 modules, 3x3 construction underway
- •Each module: 6.5 x 6.5 x 110 cm³

Slide by T. Chujo

FoCal-E pad trigger and readout scheme discussion

• Started Bi-weekly meeting on trigger using FoCal-E pad data.

(S. Shimizu)

Layer ID

• Skimming simulations for trigger simulation, and trigger studies are ongoing.

Slide by T. Chujo

Backup Slides

The p-type monitor PD (Tsukuba)

The C-V characteristics of n-type monitor PDs

Discussion

- 2022.4.8: Decision by the STAR management
 - They cannot accept the RHICf-II proposal.
 - The main reason is the lack or human resources.
- 2022.4.22: NPP meeting
 - Any way to change this situation?
 - To avoid losing the RHICf-II physics for understanding the forward hadron production mechanism
 - Diffractive process
 - Air-shower development & cosmic neutrino background
- RHICf-I data analysis will continue
 - Combined analysis with STAR detectors
 - Event type categorization
 - Diffraction + resonance tagging with STAR + RHICf

Status

- Residual radiation levels are still too high to take anything out of the area.
- We have been able to disassemble some of the setups and identify areas with high radiation levels.
 - Substrate
- Expect to be able to take out the ones that are low enough next week.
- Setups are being stored together in the area and online measurements are continuing.
- Inaba-san is working on the analysis of the online measurement data.

Collision system & Polarization	Science goals & objects	Measurement time, luminosity or number of events	Trigger rate / DAQ requirement
p+p Radial polarization	High-p _T π ⁰ , K ⁰ _S , Λ SSA	1 pb ⁻¹ , a few hours with 200 Hz rare trigger	200 Hz rare trigger for high- p _T π^0 , K ⁰ _S , Λ with no-prescale & high efficiency
p+p Vertical polarization	K ⁰ _S , Λ Spectrum	10 ⁸ events, about a week with 200 Hz shower trigger (with prescale)	200 Hz shower trigger (with prescale)
p+A Radial polarization	High- $p_T \pi^0$ SSA nuclear dependence	Similar to p+p Radial polarization	200 Hz rare trigger for high- $p_{\rm T} \pi^0$ with no-prescale
p+A Vertical polarization	Photon, π ⁰ , neutron Spectrum	< 10 ⁸ events, < 1 week with 200 Hz shower trigger (with prescale)	200 Hz shower trigger (with prescale)

ZDC performance issue

- Luminosity measurement
 - No effect found in 2017 Vernier scan data
 - Can we understand this?
 - Calibration by Vernier scans if necessary
- Polarization measurement
 - Especially, problematic blue-beam snake failure requires a stable measurement
 - How stable we can monitor & evaluate polarization of the blue beam?
 - With shifted threshold energy of ZDC by our detector
 - We're studying the effect of additional material in front of the ZDC, or W+ZDC by simulation.
 - We'll consider to study it with existing data in 2022.

Peoplepower issue

- BNL's peoplepower necessary for installation and safety
 - We will do everything we can to support this.
- Hardware design and fabrication to be done by the RHICf-II collaboration
 - Remote manipulator in front of the ZDC
 - Other materials and supplies
- Participation in the STAR shift from 2023
- New collaborators in the US
 - Stony Brook Univ, Kansas Univ
- Other new collaborators
 - Sejong Univ

DAQ requirement

- STAR data recording with 200 Hz RHICf trigger
 - 10% TPC data recording if possible
 - Remaining 90% without TPC but all other STAR data recording for combined analysis of RHICf + STAR
- Standalone RHICf-II DAQ with independent data stream
 - Event correspondence between STAR DAQ & RHICf-II DAQ with event number sharing
 - Established in 2017 run

Available space

- We installed RHICf calorimeter (LHCf Arm-1 calorimeter) in 2017.
 - W:9cm x H:62cm x D: 29cm
 - by removing the top structure as shown in the right picture

Available space

- There is a ZDC support frame under the detector.
- Due to this limitation, there is only about 5cm space below the beam pipe.
- The space between the beam pipes is about 12.5cm in front of the ZDC.
 - (9.5 cm at the exit of the vacuum section)

May 17, 2022

Configuration 1

Aggregator and interface boards for 2022

- For SPS test beam in 2022, PCB v2, aggregator and interface board have been produced and largely programmed
- Logic tests are ongoing
- Built-up of cosmic test bench in progress
 - Grenoble group is preparing the firmware and online monitoring software

(Olivier Bourrion, Damien Tourres, Fatah Rarbi, Rachid <u>Guernane</u> and Grenoble LPSC CAD team)

(Grenoble)

5

2022 SPS test beam setup

List of tasks

- Simulation tasks
 - ZDC + W simulation for luminosity measurement and polarimetry performance with shifted threshold energy of ZDC
 - $\Lambda \rightarrow$ n + 2γ background simulation for reconstruction and resolution
 - Detector configuration and trigger scheme
 - Minho Kim is working on the simulation studies
- Blue beam snake failure
 - 2022 data analysis
 - Hope someone can participate in 2022 data analysis
- Timeline for the RHICf-II calorimeter construction
 - ALICE-FoCal-E prototype beam test at CERN-SPS in 2022 (September & November)
 - ALICE-FoCal-E prototype will be used as the first module of the RHICf-II calorimeter and commissioned at RHIC in 2023
 - The second module will be constructed in 2022-2023

Physics at RHICf & RHICf-II

- Measurements of neutral particle production at zero degree with RHIC polarized proton collisions
- Cosmic-ray study
 - Cross section measurement to understand ultra-high energy cosmic rays
- Asymmetry measurement
 - To understand the hadronic collision mechanism based on QCD

RHICf at STAR in 2017

• EM calorimeter (RHICf detector) installed in front of the Zero-Degree Calorimeter (ZDC) of the STAR experiment

- Two position-sensitive sampling calorimeters
 - TS (small tower): 20mm x 20mm
 - TL (large tower): 40mm x 40mm
 - Tungsten absorber (44 X_0 , 1.6 λ_{int})
 - 16 GSO sampling layers
 - 4 XY pairs of GSO-bar position layers

May 17, 2022

RHICf at STAR in 2017

- π^0 asymmetry
 - Phys. Rev. Lett. 124, 252501 (2020)
 - Comparison with high $p_T > 0.5 \text{ GeV}/c$ data of the past experiments
 - Nearly the same large asymmetry is reached at low $p_T < 0.2~{\rm GeV}/c$
 - Contribution of other mechanisms, diffraction and resonance, may provide a hint to the mystery

RHICf at STAR in 2017

- Other analyses ongoing
 - π^0 & neutron cross section analysis
 - Neutron asymmetry (RHICf + ZDC)
 - Combined analysis with STAR detectors
 - Event type categorization
 - Diffraction + resonance tagging with STAR + RHICf combined data analysis
 - Event type, multiplicity (FMS) dependence of cross section & asymmetry to be obtained

New STAR results

- Phys.Rev.D 103 (2021) 092009
 - √s = 200 GeV & 500 GeV
 - Forward π^0 , 2.7 < η < 4.0
 - Asymmetries for the isolated π^0 are larger than these for the non-isolated π^0
 - Possible explanation is that a significant part of the isolated π^0 are from diffractive processes

New STAR results

- Phys.Rev.D 103 (2021) 092009
 - Small EM-jet asymmetry, consistent with AnDY result
 - $z_{em} = E_{\pi 0} / E_{jet}$
 - Hadron in jet Collins asymmetries small
 - Cancellation of the Collins effect of the u/d quark?

RHICf-II proposal

- We have proposed a second run for RHICf in 2024 (RHICf-II)
- RHICf-II LoI was discussed by the PAC in 2020.9
 - Parasitic beam-time
- We're collaborating with ALICE-FoCal group to use the FoCal-E technology
 - 8cm x 18cm detector
 - Kakenhi-Kiban-A (2021-2024) + RIKEN budget
 - The detector have enough radiation hardness to work for a small β* and normal luminosity

RHICf-II Collaboration

- Y. Goto, I. Nakagawa, R. Seidl (RIKEN)
- B. Hong, M.H. Kim (Korea Univ.)
- K. Tanida (JAEA)
- T. Chujo (Tsukuba Univ.) ← New
- Y. Itow, H. Menjo (Nagoya Univ.)
- T. Sako (ICRR, Univ. of Tokyo)
- K. Kasahara (Shibaura Tech.)
- O. Adriani, L. Bonechi, R. D'Alessandro (INFN Firenze)
- A. Tricomi (INFN Catania)
- New collaborators expected or under discussion from:
 - Sejong Univ.
 - Univ. of Kansas
 - Nara Women's Univ. and EIC Japan group
- Cooperation from FoCal collaboration
 - ORNL

- ${\rm K0}_{\rm S}$ and Λ measurement
 - Spectrum and cross section
 - Asymmetry
- A-dependence of the π^0 asymmetry
 - Correlation between asymmetries of forward neutron and π^0
 - Strong A-dependence of the neutron asymmetry measured at PHENIX in Run 15
 - Phys. Rev. Lett. 120, 022001 (2018) ^{0.4}
 - UPC vs hadronic component

ALICE FoCal-E

- Led by Tsukuba Univ. group
- Tungsten absorber
- Low granularity (LG) silicon pad for energy measurement
 - $\sigma_{\rm E}$ / E = 25% / $\sqrt{\rm E}$ (GeV) \oplus 2% for photon energy resolution (simulation)
- High granularity (HG) silicon pixel (CMOS-MAPS) for accurate position measurement

ALICE FoCal-E for RHICf-II

- Space restriction at RHICf
- Pad layer
 - Lead by Tsukuba Univ. group
 - Readout electronics based on HGCROC ASIC (CMS) working with Grenoble group leading the development
- Pixel layer
 - Lead by European group
- Trigger
 - Rare trigger for asymmetry measurement
 - Shower trigger for cross section measurement
- DAQ
 - Standalone ALICE DAQ
 - Event correspondence with STAR DAQ

- p + A collisions
 - Measurement of nuclear effect (p+A / p+p)
- Strong A-dependence of the neutron asymmetry
 - Measured at PHENIX in Run 15
 - Phys. Rev. Lett. 120, 022001 (2018)
 - UPC vs hadronic component
- A-dependence of the π^0 asymmetry
 - Correlation between asymmetries of forward neutron and π^0
- p + Oxygen collision
 - Ideal condition for cosmic-ray interaction studies measuring $\pi^0,$ neutron, photon, ${\rm K^0}_{\rm S}$

RHIC

100

-100

18.0m from IP

Crossing angle (half): 0.0 urad Detector posit on: 24.0 mm

100

- Large acceptance detector
 - 8cm x 18cm
 - For more particles: ${\rm K0}_{\rm S}$ and Λ

- 0.2 K^{0}_{S} /sec = 10⁴ K^{0}_{S} s in 14 hours operation
- $\Lambda \rightarrow n + \pi^0 \rightarrow n + 2\gamma$ (B.R. 35.9%)
 - 12 Λ /sec = 10⁵ Λs in 2.5 hours operation
- Geometric acceptance of $\pi^0,\,\mathsf{K}^0{}_{\mathsf{S}}$ and Λ

- K⁰_S for studying impact on the high-energy atmospheric neutrino flux
 - Differences in p+p collisions at 200 GeV between models: EPOSLHC (magenta), QGSJET II-4 (blue), SIBYLL 2.3 (green)

Kaons in atm. v productions

6 years (ICRC 2017)

La Contraction of the second s

10²

 10^{1}

 10^{0}

10⁻¹

Events per 2078 Days

IceCube detected astronomical neutrinos. Better understanding of background (Atmospheric neutrinos) is required.

Slide by H. Menjo

- Asymmetry measurement of ${\rm K^0}_{\rm S}$ and Λ
 - Expected statistical uncertainty of asymmetry measurements for $\pi^0,~{\rm K^0}_{\rm S},$ and Λ compared to the RHICf (Run 17) π^0
 - Assuming the similar luminosity

