ハイパー核・ストレンジネスWG

2011.2.22 代表者会議 高橋 俊行

WGメンバー

- 代表 高橋俊行(KEK)
- 副代表 中村哲(東北)
- •世話人 永江(京都)
- 実験 味村(RCNP), 佐久間(RIKEN),

鈴木(東京)、三輪(東北)、藤岡(京都)、 高橋仁(KEK), 谷田(ソウル)

• 理論 肥山(RIKEN),土手(KEK)

URL http://nexus.kek.jp/np_strange_wg/

研究テーマ

- ストレンジネス多体系の研究

 QCDに基づいた
 バリオン間相互作用
 >核力
 ハイパー核(バリオン多体系)
 メソン束縛系(メソンーバリオン系)
 S=-1, -2, -3、、、∞
 - 高密度核物質
 - 不純物効果
- ・チャーム

これまでの活動

- キックオフ会(第1回)
 2010.11.3 RIKEN
- 第2回 2010.12.3 KEK
 - 中村さんからの宿題の発表
- town meeting at ストレンジネスWS

2010.12.4 KEK

- 第3回 2010.1.16 KEK
 - 勉強会の提案
- 第4回 2010.2.19 東大
 - Lattice QCD / YN散乱実験 勉強会

まずは、問いに答えるところから(第2回WG) 5年後

J-PARC

採択済実験の着実な遂行

- Ξ核分光
- Hybrid-Emulsion法でのS=-2核の研究
- Ξ原子X線分光
- ハイパー核ガンマ線分光
- ΣN散乱実験(新手法の確立)
- K核存在の決着→その物性の測定
- $\Lambda(1405)$, Kaonic Atom (H,D,⁴He)

JLab (12GeV upgade 2012-13)

- (e,e'K⁺)分光→中重核領域への展開
- •HKS/HESでのハドロン物理
- decay-π-spectroscopy手法の確立 (Mani & JLab)→J-PARCでの展開へ

他の施設

- 重イオンでのハイパー核生成@GSI invariant mass spectroscopyの確立から 展開へ
- Ac(2765)分光@Belle
- 電磁相互作用によるストレンジネス 生成@ELPH

理論

Lattice QCDによる核力が現実的に 現象論的核力は?

10年後を想定して

Q2. 現在拠点としている研究施設についてのアップグレード Q3. そこで展開する物理, Q4. 10年後の研究テーマ

J-PARC ハドロンホール拡張, ビームライン増設 (含む K1.8, BR の同時実験, K1.1) 高分解能ビームライン 10-4 分解能の高分解能大立体角スペクトロメータ 多目的に使えるK⁰ spectrometer hybrid decay counter: 多重度大、荷電粒子も中性子も(γ線も) ハイペロンビーム ハイブリッドエマルジョン クリスタルスペクトロメータ 50 GeV アップグレード(我々にとって必須か?) 中性子過剰ハイパー核 Ξ核、ΛΛ核、double K^{bar}核 ... ハロ−核+∧ K-ppn, K-ppp (p,K⁺)反応とか→逆運動学で磁気モーメント測定 Kbar N 散乱、エキゾチック原子 エキゾチック中間子核:n核、n'核 sdシェルハイパー核γ線測定 YN 散乱の系統的研究 Pbar-A 反応による S=-2 物理 S=-3 系のエマルジョンによる発見 YY相互作用 海外施設 (e,e'K) + 崩壊 π, もしくはγ線 同時計測実験 Jlab, MAMI-C HypHI, PANDA RHIC, Fair その他 >1.5GeV 電子ビームライン ELPH Belle チャームバリオン分光

Q5.ストレンジネス分野で10年後に keyとなっている問題

 相互作用
 現象論的ハドロンカの詳細な理解

 Lattice QCD、Quark based の理論による QCD-現象論の橋渡し
 媒質効果

 賃量の起源

 構造
 軽いハイパー核の統一的理解
 ハイパー核の構造:多体系ダイナミクス

 指密計算の進展(クラスター、シェルモデル)

 過去のデータの再検討

重いハイパー核の詳細な構造の解明による核物質、ストレンジマターの理解 (平均場理論)

ハイパー核四重極モーメント(ハイパー核の形)

マルチストレンジネス系

反応、崩壊

Hadronic production , EM production ハイパー核弱崩壊

KEK-PS (K5,K6), J-PARC, CEBAFで現在展開している物理の 種は20年前には播かれていた…

20 年後の物理

Charm Hypernuclei

J/ψ、Dメソンを含む系

重イオン衝突によるハイパー核分光 (HypHI, PANDA, その先?)

^^核のガンマ線分光

∧∧∧核, S=-3 系: パウリ原理が働く中での∧間(有効)相互作用

重イオン加速器施設、 高運動量ビームライン e+ e- → NN^{bar} まったく新しい方式の加速器

新検出器

バリオン間相互作用研究(勉強会)

- 初田「格子QCDによるバリオン間相互作用」
- 三輪「Σ[±]p散乱実験計画」
- 家入「(KEKでの)YN散乱実験」

格子QCD (Powerfull tool)

- No free parameter
- 5-10年後には、physical massでの詳細な計算が可能
- 2体力と同じ枠組みで多体力が計算可能
- ⁴Heまでが計算限界 NNと同様な(精度、信頼できる)YN/YY相互作用

散乱実験

• すべてのチェンネルでの実験は現実的ではない。

格子QCDの確認

- ・ 斥力芯 <-> quark-levelのPauli 排他律の有無 -> Σ⁺ p, Ξ⁻ p
- 偏極Observable -> ALS

特徴あるチェンネル、観測量の測定

不定性のない相互作用に基づいた多体系(ハイパー核)の議論へ

B-B Interaction in SU(3)_f

YN Scattering
- Anti-symmetric spin-orbit –

$$M = a + c(\sigma_n^1 + \sigma_n^2) + b(\sigma_n^1 - \sigma_n^2) + m\sigma_n^1 \cdot \sigma_n^2 + g(\sigma_p^1 \cdot \sigma_p^2 + \sigma_k^1 \cdot \sigma_k^2) + h(\sigma_p^1 \cdot \sigma_p^2 - \sigma_k^1 \cdot \sigma_k^2)$$

$$1 + 2 \rightarrow 1 + 2$$

$$I_0 = 1/4Tr(\mathbf{MM}^+) = |a|^2 + |b|^2 + |c|^2 + |m|^2 + |g|^2 + |h|^2$$

$$1 + 2 \rightarrow 1 + 2$$

$$I_0 P_r = 1/4Tr(\mathbf{MM}^+ \sigma_n^1) = 2 \operatorname{Re}[(a + m)c^* + (a - m)b^*)]$$

$$1 + 2 \rightarrow 1 + 2$$

$$I_0 A_r = 1/4Tr(\mathbf{M}\sigma_n^2\mathbf{M}^+) = I_0 P_r$$

$$1 + 2 \rightarrow 1 + 2$$

$$I_0 A_r^T = 1/4Tr(\mathbf{M}\sigma_n^2\mathbf{M}^+) = I_0 P_r^T$$

$$= 2 \operatorname{Re}[(a + m)c^* - (a - m)b^*)]$$

Λp & Σ^+ **p scattering**

偏極(水素)標的

散乱実験デザイン上のKey Points

$\Sigma^- p$ Scattering Exp.

	E289	P40	•
Target	SciFi Active target (CH)	LH ₂	
Beam intensity	1.5 × 10 ⁵ /spill	2×10 ⁷ /spill	
Σ⁻ beam	1.8×10^5 (including	1.6 × 10 ⁷	
candidate	quasi free production)	(No quasi fre production)	е
Σ^{-} track length	7 x 10 ⁴ cm *	$2.7 \times 10^{7} \text{ cm}$	
Σ ⁻ p scattering	30 *	10,000	

- •Hyperon生成用ビームの強度 ~10⁷/spill (Hz)が必要
- ・ 散乱標的とも(液体)水素
 が必要。
 →Q.F.との分離で損をする。
- Image Dataが必要か?
 議論の余地あり、
 High-speed gateable Image pipeline
 で同程度のビーム強度を扱える

Low energy散乱をとらえるには、Bubble Chamberのような装置が必要

- → (液体)水素TPC (15 atom のH2(gas) TPCはあるらしい)
- → 光る液体水素 (Imaging)

今後の活動

- 第5回WG (3/12)
 - OBEP 相互作用模型勉強会
 - -これでB-B相互作用の部分は終了
- ・ 勉強会 詳細は未定
 - ハイパー核多体系のダイナミクス
 - 核物質としてアプローチ
- 報告書
 - 目次作りが進行中

報告書(目次)

- ハイパー核・ストレンジネス核物理の目的
- バリオン間相互作用の研究
 - 格子QCD/OBEP based model/quark based model
 - YN散乱実験
- ハイパー核研究

ここが中心

- 生成(実験)手段ごと
- 研究テーマ
- メソン束縛系の研究
 - メソン・バリオン間相互作用
- Charm系
- Dream Apparatus