Monte-Carlo Event Generator for forward hadron productions

Yasushi Nara (Akita International Univ.)

- Introduction
- Hybrid formula (DHJ) for forward hadron production
- Event generator version of DHJ formula
- Transverse momentum spectra at RHIC and LHC
- Summary

J.L.Albacete, W-T. Deng, A. Dumitru, H. Fujii, K. Itakura

2022/7/15 18th High energy QCD,RIKEN

General purpose Event generators

- Pythia8, Herwig++, Sherpa
 - pQCD hard scattering
 - Multiple scattering
 - Initial state radiation
 - Final state radiation
 - Soft physics
 - Hadronization

Collinear factorization *

Collinear-factorization

Traditional collinear factorization: two partons with no transverse momenta scatter.

$$d\sigma = x_1 f(x_1, Q^2) x_2 f(x_2, Q^2) d\hat{\sigma}$$

$$f(x_1, Q^2) \qquad k_1 = \frac{\sqrt{s}}{2} (x_1, 0, 0, x_1)$$

$$k_{1\perp} = 0$$

$$p_3 = (p_T \cosh y_3, p_\perp, p_T \sinh y_3)$$

$$p_4 = (p_T \cosh y_4, -p_\perp, p_T \sinh y_4)$$

$$k_{2\perp} = 0$$

$$k_{2\perp} = 0$$

$$k_2 = \frac{\sqrt{s}}{2} (x_2, 0, 0, -x_2)$$

Structure of the nucleus at high energies

Saturation scale

QCD Linear Evolution Equations, DGLAP and BFKL predict rapid rise for $x \ll 1$.

Gauge field in the MV model

The gluon distribution is large:

Suggest the use of the semi-classical methods

Color Glass Condensate

 $B \cdot E = 0, B_z = E_z = 0$

Kt-factorization for small-x

Small-x: x-evolution of gluons produces many gluons with transverse momentum.

$$\sigma = x_1 f(x_1, Q^2) x_2 f(x_2, Q^2) d\hat{\sigma}$$

$$xf(x,Q^2) = \int^{Q^2} \phi(x,k_{\perp}^2) dk_{\perp}^2$$

 $\phi(x, k_{\perp}^2)$: unintegrated gluon distribution $d\sigma = dm{k}_{1\perp}^2 dm{k}_{2\perp}^2 \phi(x_1,m{k}_{1\perp})\phi(x_2,m{k}_{2\perp})d\hat{\sigma}$

Hybrid formula for asymmetric situation

For the asymmetric stituation $x_1 \gg x_2$ in the forward hadron production,

$$d\sigma = d\boldsymbol{k}_{2\perp}^2 x_1 f(x_1, Q^2) \phi(x_2, \boldsymbol{k}_{2\perp}) d\hat{\sigma}$$

D. Kharzeev et al. / Nuclear Physics A 747 (2005) 609-629

(

Hybrid formula (DHJ)

A. Dumitru, A. Hayashigaki, J.Jalilian-Marian, NPA765(2006)464, NPA770(2006)57

running coupling Balitsky-Kovchegov (rcBK) evolution for dipole amplitude N

 $\frac{\text{HERA F2 data global fit from rcBK equation}}{\partial y} = \int d^2r_1 \ K(r, r_1, r_2) \left[\mathcal{N}(r_1, y) + \mathcal{N}(r_2, y) - \mathcal{N}(r, y) - \mathcal{N}(r_1, y) \mathcal{N}(r_2, y) \right]$

Albacete, Armesto, Mihano, Salgado 2009

Comparison to RHIC/LHC data for pp collisions

Strong constraint to the initial condition at LHC

 $\gamma>1 \rightarrow$ evolution slow down

J.L.Albacete, A. Dumitru, H. Fujii, Y.N. NPA897(3013)1

How do you treat low pt region?

Perturbative approach is limited for large pt region, however, most particles are produced with low pt (pt < 1 GeV).

Local Parton hadron duality (entropy conservation): assumption that multiplicity of parton is the same as that of hadrons.

KLN/CGC gluon distribution are compared with the charged hadrons in pp collisions.

D. Kharzeev et al. Nucl. Phys. A747 (2005) 609-629

Local parton-hadron duality $\underline{Kt-factorization + LPHD}$

E.Levin and A. H.Rezaeian, Phys. Rev. D82, (2010)014022, Phys.Rev. D82 (2010) 054003

LPHD and FF in DHJ

Within kt-factrizaton approach, High pt hadrons are well described by the Fragmentation function,

Low pt hadrons including multiplicity are well described by the parton-padron duality.

More realistic model: event generator version is needed for the unified description..

Monte-Carlo event generator for CGC

First attempt: BBL (Black-Body limit) Monte-Carlo Model based on kt-factorization and SIBYLL by H.J. Drescher, A. Dumitru, M. Strikman, Phys.Rev.Lett. 94 (2005) 2

We would like to develop generator based on

DHJ (Dumitru-Hayashigaki-Jalilian-Marian) formula with rcBK unintegrated gluon dist.

for the description of forward hadron productions.

Monte-Carlo Event Generator for DHJ approach

 $gg \rightarrow g, gq \rightarrow q$ with initial and final state radiations

Gluons and quarks are generated according to the DHJ formula.

$$\frac{dN}{dyd^2p_{\perp}} = \frac{K}{(2\pi)^2} f_{i/p}(x_1, p_{\perp}^2) N_i(p_{\perp}, x_2)$$

Hadrons are produced by the Lund string fragmentation model

W-T. Deng, et.al PRD91 (2015) 014006

<u>P + P@200GeV negative hadrons</u>

Pythia and HIJING need primordial kt=2GeV to fit the data.

Identified hadrons@200GeV

Proton distribution at y=3.3

Pythia8 improves the description of baryon spectra.

Forward neutral pion from LHCf

 $x pprox 1 imes 10^{-7}~$ O. Adriani et al. (LHCf Collaboration), Phys. Rev. D86,092001 (2012).

DHJ+Lund v.s. soft string fragm.py8

W-T. Deng, et.al PRD91 (2015) 014006

<u>summary</u>

 Monte-Carlo Event Generator version of DHJ model has been developed.

DHJ + Lund string fragmentation model

- We use unintegrated gluon function from rcBK equation which is fitted by HERA data at x<0.01.
- Particle distribution for pp collisions are well fitted by the model from low to high momentum region.
 - $\boldsymbol{\cdot}$ Extension to pA and AA
 - NLO
 - Initial state radiation due to x-evolution

$$\begin{array}{l} \underbrace{\text{Unintegrated gluon distribution}}_{\mathcal{N}(r,Y=0) = 1 - \exp\left[-\frac{(r^2 \, Q_{s0}^2)^{\gamma}}{4} \ln\left(\frac{1}{\Lambda \, r} + e\right)\right] & \gamma = 1.119\\ Q_{s0}^2 = 0.168 \, \text{GeV}^2\\ \varphi(k,x,b) = \frac{C_F}{\alpha_s(k) \, (2\pi)^3} \int d^2 \mathbf{r} \, e^{-i\mathbf{k}\cdot\mathbf{r}} \, \nabla_{\mathbf{r}}^2 \, \mathcal{N}_G(r,Y=\ln(x_0/x),b)\\ \oplus \begin{array}{c} 0.1 \end{array} & \text{MV i.c.:} & \gamma = 1, \ Q_{s0}^2 = 0.2 \text{GeV}^2 \end{array}$$

Rapidity evolution

running coupling Balitsky-Kovchegov (rcBK) evolution

$$\frac{\partial \mathcal{N}(r,x)}{\partial y} = \int d^2 r_1 \ K(r,r_1,r_2) \left[\mathcal{N}(r_1,y) + \mathcal{N}(r_2,y) - \mathcal{N}(r,y) - \mathcal{N}(r_1,y) \mathcal{N}(r_2,y) \right]$$
$$Q_s^2 \sim x^{-\lambda_{LO}}, \text{ with } \lambda_{LO} \simeq 4.88 \ N_c \ \alpha_s / \pi$$

$$\begin{split} K^{\rm LO}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) &= \frac{N_c \,\alpha_s}{2\pi^2} \frac{r^2}{r_1^2 \,r_2^2} & \text{HERA fit yields } \lambda \sim 0.2 - 0.3 \\ \text{LO-BK shows too fast evolution to fit HERA data.} \\ K^{\rm run}(\mathbf{r}, \mathbf{r_1}, \mathbf{r_2}) &= \frac{N_c \,\alpha_s(r^2)}{2\pi^2} \left[\frac{r^2}{r_1^2 \,r_2^2} + \frac{1}{r_1^2} \left(\frac{\alpha_s(r_1^2)}{\alpha_s(r_2^2)} - 1 \right) + \frac{1}{r_2^2} \left(\frac{\alpha_s(r_2^2)}{\alpha_s(r_1^2)} - 1 \right) \right] \end{split}$$

Running of the coupling reduces the evolution speed down to values compatible with data (JLA PRL 99 262301 (07))

$$\mathcal{N}(r, x = x_0) = 1 - \exp\left[-\frac{\left(r^2 Q_{s\,0}^2\right)^{\gamma}}{4} \ln\left(\frac{1}{r\Lambda} + e\right)\right]$$

1+1D Motion of relativistic string

$$H = \sqrt{p_1^2 + m_1^2} + \sqrt{p_2^2 + m_2^2} + \kappa |x_1 - x_2|$$

$$\frac{dx_i}{dt} = \frac{\partial H}{\partial p_i} = \frac{p_i}{E_i}, \quad \frac{dp_i}{dt} = -\frac{\partial H}{\partial x_i} = \pm \kappa$$
Motion due to linear potential (Lorentz invariant)

$$p(t) = \kappa (t_0 - t), \quad E(t) = \kappa (x_0 - x)$$
$$m^2 = E^2 - p^2 = \kappa^2 [(x_0 - x)^2 - (t_0 - t)^2]$$

Hyperbolic curve in space-time coordinate

yo-yo motion 27