Transverse single-spin asymmetry measurement at the RHICf experiment

Minho Kim (RIKEN BNL Research Center) on behalf of the RHICf collaboration

第18回高エネルギーQCD·核子構造勉強会

Transverse single-spin asymmetry (A_N)

- In polarized p + p collision, A_N is defined as a left-right cross section asymmetry of a specific particle.
- In the RHICf experiment, with the cross section we also measured the A_Ns for very forward neutron and π^0 productions.
 - Why do we measure the A_N for very forward neutron and π^0 production?
 - How do we measure and analyze it?

Relativistic Heavy Ion Collider (RHIC)

Polarized p + p collision

Non-diffractive process

- Non-diffractive process is described by a hard scattering between quarks and gluons.
- By hard scattering, there is a large Q² and the large Q² makes the p_T of the fragmented hadron usually larger than 1 GeV/c.

A_N for forward π^0 production

Diffractive process

- Diffractive process is described by a soft scattering in the mesonic degree of freedom.
- Very forward neutron A_N has been explained by an interference between spin flip (π exchange) and non-flip (a_1 exchange) amplitudes.

RHICf motivation for π^0

• A_N of isolated π^0 is larger than that of non-isolated π^0 .

- The condition, isolated, corresponds to large z which can carry large fraction of the spin effect making larger A_N .
- On the other hand, the diffractive process may have a finite contribution to the $\pi^0 A_N$ as well as the non-diffractive one.

RHICf motivation for π⁰

• No detailed measurement ever for the $p_T < 1$ GeV/c.

RHICf experiment measured the A_N for very forward π^0 production to study a possible diffractive contribution.

RHICf motivation for neutron

- The π and a_1 exchange model predicts that the A_N increases in magnitude with p_T without x_F dependence.
 - Recently, unfolded A_N at PHENIX showed a consistent behavior with the model prediction.

RHICf motivation for neutron

- RHICf experiment measured the neutron A_N up to the highest p_T region ever measured to test the π and a_1 exchange model in a wide p_T coverage.
- Comparison between RHICf and PHENIX data also should be done to make sure if there is collision energy dependence.

RHIC forward (RHICf) experiment

STAR experiment

- Operated at STAR in polarized p + p collisions at √s = 510 GeV in June 2017.
- RHICf detector was installed in front of the ZDC.
- ŋ > 6,
 0.2 < x_F < 1.0, and
 0.0 < p_T < 1.0 GeV/c.

RHICf detector

Side view

Front view

- RHICf detector consists of two sampling towers.
- 17 tungsten absorbers (44 X_0 , 1.6 λ_{int}), 16 GSO plates, and 4 layers of GSO bars.
- I Two diamond shape is for
 - Measurement of two π^0 photons.
 - Minimum shower leakage from one to the other tower.

Neutron measurement

Side view

Front view

Shower trigger is operated when the energy deposits of three successive layers are larger than 45 MeV.

π^0 measurement

r

High EM trigger

Neutron photon separation

- L_{90%} is defined as the longitudinal depth in the detector where the accumulated energy deposit reaches 90% of total energy deposit.
- Electromagnetic shower is developed in more forward area than hadronic one. → $L_{90\%}^{EM} < L_{90\%}^{Hadron}$

Position reconstruction

Energy reconstruction

Invariant mass distribution

I Data is well matched with simulation showing clear π^0 peak around 135 MeV/c². \rightarrow Calibration was done well.

Invariant mass was fitted by polynomial function for background and Gaussian one for π^0 .

Background A_N subtraction

$$A_{N} = \frac{\sigma_{L}^{\uparrow} - \sigma_{L}^{\downarrow}}{\sigma_{L}^{\uparrow} + \sigma_{L}^{\downarrow}} = \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = \frac{(N_{S}^{\uparrow} + N_{B}^{\uparrow}) - (N_{S}^{\downarrow} + N_{B}^{\downarrow})}{(N_{S}^{\uparrow} + N_{B}^{\uparrow}) + (N_{S}^{\downarrow} + N_{B}^{\downarrow})}$$
$$\longrightarrow A_{N}^{S+B} = \left(\frac{N_{S}}{N_{S+B}}\right) A_{N}^{S} + \left(\frac{N_{B}}{N_{S+B}}\right) A_{N}^{B}$$

- Spin up-down cross section can be replaced by number of particles measured.
- Two ratios, N_S/N_{S+B} and N_B/N_{S+B} , can be estimated by fitting the invariant mass distribution.
- Background A_N is calculated by using the entries where the invariant mass is further than 5σ from the peak.

Neutron unfolding

21/28

A_N for very forward π^0 production

• At very low $p_T < 0.07$ GeV/c, the A_N is consistent with zero.

- However, the higher p_T range the A_N is measured in, the more clearly it increases as a function of x_F .
- Non-zero A_N of π^0 may come from not only the non-diffractive process but also the diffractive one.

Comparison with forward π^0

PRL 124, 252501 (2020)

The very forward $\pi^0 A_N$ seems to be comparable with the forward one even at low $p_T \leq 1$ GeV/c.

They may share a common underlying production mechanism or may have their own ones.

RHICf-STAR combined analysis

Non-diffractive event Central detectors BBC small BBC large BBC large BBC small ToF VPD VPD BEMC η -axis TPC EEMC BBC RHICf VPD ZDC FMS

- Using STAR ToF, BBC, and VPD, we can study the detector correlation or event type dependence for the very forward $\pi^0 A_N$.
- For example, there should be signals in the TOF, BBC, and VPD if a π⁰ comes non-diffractive event.

Eta-meson reconstruction

A_N for very forward neutron production

In the higher x_F region, the A_N increases in magnitude with p_T .

- In the low p_T region, RHICf and PHENIX data are consistent with each other without x_F dependence as the model predicted.
- In the high p_T region, there seems a x_F dependence.

A_N for very forward neutron production

In the low p_T region, the A_N s are flat showing no x_F dependence.

- In the high p_T region, a clear x_F dependence is observed.
- The analysis will be complete soon with more precise background estimation.

Summary

- In June 2017, the RHICf experiment measured the A_N s for very forward neutron and π^0 production.
- Non-zero A_N was observed even in the very forward π^0 production.
 - Will be studied in more detail by the RHICf-STAR combined analysis.
 - A x_F dependence was observed in the very forward neutron A_N .
 - Analysis will be complete with more precise background estimation.
 - Could find a hint from the combined analysis.