Study on ZDC Crystal calorimeter

Shima Shimizu (RIKEN)

EIC-Japan meeting on 4/Jul/2022

Material for crystal calorimeter

- ◆ Current choice in Geant4 simulation : PbWO₄
- Other candidates for Crystal:

	light yield	cost	note
PbWO ₄	low	less expensive	
LYSO	high (>100 x PbWO ₄)	high (~ 4 x PbWO ₄)*	good timing resolution
SciGlass	better than PbWO ₄	not high	still in development
* Ce doped. EIC calorimetry workshop 2021			

- ♦ Today:
 - Introduce the simulation of LYSO
 - Introduce the effect of photon counting
 - Compared to PbWO₄ using single photon events.

LYSO calorimeter

 $LYSO = Lu_{2(1-x)}Y_{2x}(SiO_4)O$

In my simulation:

- Lu : Y : Si : O = 1.8 : 0.2 : 1 : 5
- Density = 7.4 g/cm^3
- No Ce is doped.
- \rightarrow Radiation length: 11.7 mm (cf. PbWO₄ 8.9 mm)
- → Check energy response using the energy deposits

Photon energy map on Crystal

100 MeV photons

20 GeV photons

Shown energy is "amount of energy that can make scintillation light".

• No clear tendency in the energy spread on x-y plane.

Energy distribution on Crystal (energy deposits)

Comparison of 7cm PbWO₄ (=7.9 X_0), 7 cm and 9.2 cm (=7.9 X_0) LYSO

A cluster is created from a tower w/ E> 15 MeV. 3x3 towers form a cluster.

As far as the crystal has the same radiation length, the performance looks similar.

Photon counting effect

<u>Recipe:</u>

For each G4 step,			
E_deposited [GeV]	= GetVisibleEnergyDeposition(aStep)		
	Function to get amount of energy that can make scintillation light, in Unit of GeV		
mu	= E_deposited * 1000* Nphoton_per_MeV		
Nphoton	= Random_Poisson(mu)		
Nphoton_detected	= Nphoton * (1/18) * 0.7		
	Considering 2 APDs (each has 5mm x 5mm window) per tower (3cm x 3cm) as in CMS ECAL. Quantum efficiency = 70%.		
E_reconstructed	= Random_Poisson(Nphoton_detected) /Nphoton_per_MeV / 1000 / (1/18) / 0.7		
<u>Nphoton_per_MeV</u>			
PbWO4: 130			

LYSO: 30000 (27000~39000?)

Deposited vs Reconstructed energy on Crystal

Comparison using 100 MeV photons

Worse resolution for PbWO₄ tower energy, but the clustering efficiency is not largely affected with a threshold value of 15 MeV

Energy reconstruction

 $PbWO_4$ has worse resolution for O(100) MeV photons, but still seems to be fine with a requirement of 20~30% resolution.

Summary and note

- Comparison of PbWO₄ and LYSO, with including photon counting effect.
 - Assuming 2 APDs for each crystal tower.
 - No large difference in cluster finding efficiency.
 - Worse energy resolution for PbWO₄, but still acceptable wrt the requirement of 20%?
- However:
 - Our RANS test indicates APDs are not radiation hard enough.
 - \rightarrow Need another photon detector.
- ♦ Also:
 - As discussed in the previous EIC-J meeting, we may need to consider Preshower detector instead of Crystal calorimeter.