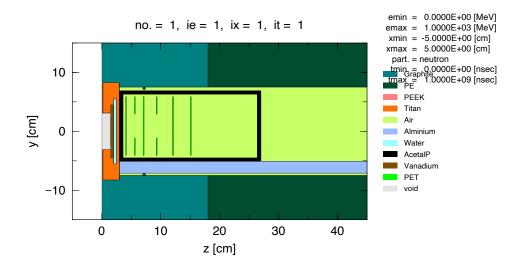
Weekly report

- EIC ZDC simulation
 - LYSO vs PbWO₄

https://indico2.riken.jp/event/4163/contributions/19025/attachments/11311/16 172/0701EICJ crystal shimizu.pdf


- Resolution is worse for PbWO₄ but is acceptable wrt the requirement of 20%.
- Efficiency looks fine.
- Next: Use Photoproduction MC for ZDC study.
- PHITS simulation for the RANS test in March
 - Calculate the amount of neutrons.
 - Geometry is ready
 - Source is ready
 - Output is in question...

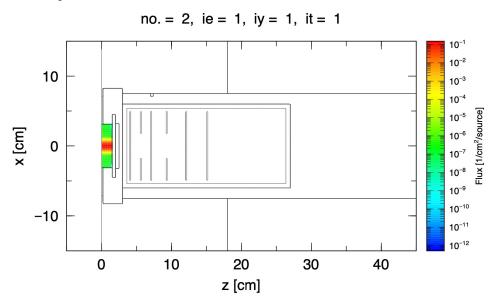
PHITS: Geometry setup

x-z view (looked from top)

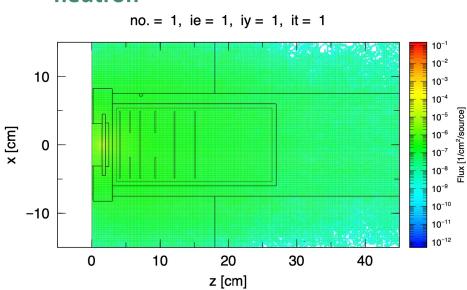
emin = 0.0000E+00 [MeV]no. = 1, ie = 1, iy = 1, it = 1 emax = 1.0000E+03 [MeV]ymin = -5.0000E+00 [cm]ymax = 5.0000E+00 [cm]part. = neutron tmin = 0.0000E+00 [nsec]10 tmaxGraphite0000E+09 [nsec] x [cm] 0 void -1010 30 40 z [cm]

y-z view (looking from side)

- Consulted Wakabayashi-san@RANS for the geometry.
 - Still might have further modification around neutron exit.
- Somehow 3D viewer is not working. Issue in OpenGL??

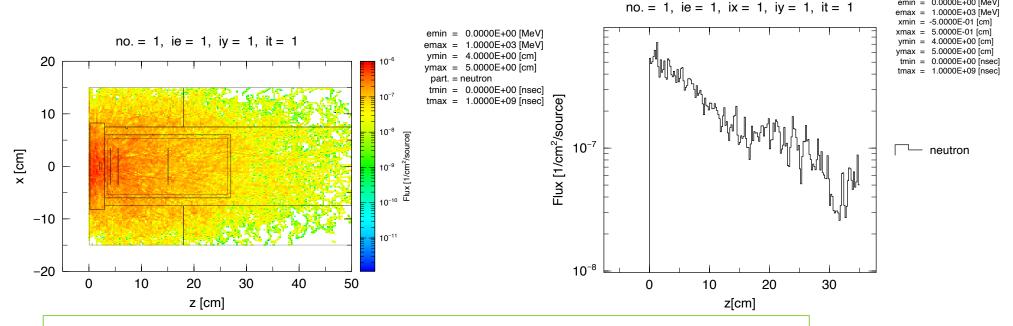

PHITS simulation

◆ 2 x 10⁸ protons are simulated


Beam setup: xy-gaussian with FWHM=0.6 cm, 7 MeV

← @RANS: collimated to 2cm circle, gaussian

Slice of -5 cm < y < 5 cm proton


neutron

One can clearly see that the proton beam makes neutrons.

PHITS: Fluence @ y=4cm

◆ 2 x 10⁸ protons are simulated.

emin = 0.0000E+00 [MeV]

Our RANS test in March

run1: 1092 sec, averaged current = 33 microA proton charge: 1.6 x $10^{-19} \rightarrow \sim 2 \times 10^{14}$ protons per second Measurement using Indium foil (1cm²) \rightarrow ~<10¹² at the upstream foils

Simulation gives $3 \times 10^{-7} / \text{cm}^2 / \text{source}$ at $z \sim 5 \text{ cm}$ (c.f. first PCB layer = 4cm) \rightarrow 3 x 10⁻⁷ x (2 x 10¹⁴) x 1000 [s] = 6 x 10¹⁰ /cm² ?? misunderstanding???

To do: Understand the output and define the measurement points