Nucleon structure experiments using proton beam - present and future -

RIKEN/RBRC Itaru Nakagawa

RHIC Future Plan

	Near term	Mid-decade	Long term
	(Runs 11–13)	(Runs 14–16)	(Runs 17–)
Colliding systems	p+p, A+A	p+p, A+A	p+p, p+A, A+A,
			e+p, e+A
Upgrades	FGT, FHC, RP,	HFT, MTD,	Forward Instrum,
	DAQ10K, Trigger	Trigger	eSTAR, Trigger
Properties of sQGP	$\Upsilon, J/\psi \rightarrow ee$,	$\Upsilon, J/\psi \rightarrow \mu\mu$,	p+A comparison
	m_{ee}, v_2	Charm v_2 , R_{CP} ,	
		Charm corr,	
		Λ_c/D ratio,	
		μ -atoms	
(2) Mechanism of	Jets, γ -jet,	Charm,	Jets in CNM,
energy loss	NPE	Bottom	SIDIS,
			c/b in CNM
(3) QCD critical point	Fluctuations,	Focused study of	
	correlations,	critical point region	
	particle ratios		· · · · · · · · · · · · · · · · · · ·
(4) Novel symmetries	Azimuthal corr,	$e - \mu$ corr,	
	spectral function	$\mu - \mu \operatorname{corr}$	
(5) Exotic particles	Heavy anti-matter,		
	glueballs		
(6) Proton spin structure	$W A_L$,		$\Lambda D_{LL}/D_{TT}$,
	jet and di-jet A_{LL} ,		polarized DIS,
	intra-jet corr,		polarized SIDIS
	$(\Lambda + \overline{\Lambda}) D_{LL}/D_{TT}$		
(7) QCD beyond collinear	Forward A_N		Drell-Yan,
factorization			F-F corr,
			polarized SIDIS
(8) Properties of			Charm corr,
initial state			Drell-Yan, J/ψ ,
			F-F corr,
			Λ, DIS, SIDIS

STAR Decadal Plan Synopsis

RHIC Performance Upgrades

- Not only detectors, but also RHIC accelerator performance also be developed
 - 9MHz cavity
 - Electron lenze
 - Spin flippers

. . .

Next 5 years

PHENIX and STAR Upgrades and Spin Physics

500GeV W MuTrig-FEE & RPC FGT PHENIX Upgrade STAR Upgrade

Transverse FOCAL FHC, Roman Pots

Heavy Flavor VTX & FVTX HFT

STAR: A Correlation Machine

Slide from STAR Decadal Plan Status James Dunlop 6/21/10 1 BNL PAC Meeting

Sea Quark Polarization Measurement via W-boson Production

High efficiency is required.

Forward (North&South) Muon Arms

High Momentum Muon Trigger

PHENIX Muon Trigger Upgrade

Muon Trigger FEE Performance

Heavy Quark Measurement

VTX can improve both Indirect and Direct method by DCA measurement.

Distance of Closest Approach (DCA)

- 1. Collision happens
- 2. D meson is emitted from the event vertex
- This D meson will decays in flight. Decay products are scattered at secondary vertex.
- Electron is measured by VTX. The track is reconstructed.
- 5. DCA = Distance of Closest Approach of a reconstructed track to the event vertex

DCA : Flight path length of Signal and Background

 $\begin{array}{c} E \ d\sigma^{3}/dp^{3} \ [mb \ c^{3}/GeV^{2}] \\ & 01 \\ & 01 \\ & & 01 \\ & & 0 \\ & & & 01 \\ & & & 1 \\ \end{array}$

Back Ground

- $\pi 0$ ct = 25.1 nm
- η for Γ = 1.30 ± 0.07 keV
- ω for Γ = 8.49 ± 0.08 MeV
- ρ for Γ = 149.1 ± 0.8 MeV
- φ for Γ = 4.26 ± 0.04 MeV
- j/ψ for $\Gamma = 28.6 \pm 2.2$ MeV
- K+/-e3 cτ = 3.712 m
- KOS cτ = 2.6842 cm
- KOL cτ = 15.34 m
- γ conv @ material

Signal

- **D0 c**τ = 122.9 μm
- D+ cτ = 311.8 μm
- **cτ = 457.2 μm** BO
- **c**τ = **491.1** μm **B+**

Emitted from Zvtx 10 $\phi \rightarrow e^+e^-$ and $\phi \rightarrow \eta e^+e^-$ Direct y conversion Kaon Kaa decay 10^{*} ⁼ar from Zvtx 10⁻⁶ 10⁻⁷ 10^{-⁵} **Relative Contribution to Cocktail** $\pi^0 \rightarrow \gamma e^+ e^$ γ conversion $\eta \rightarrow \gamma e^+ e^-$ 10⁻¹ Direct y conversion $\omega \rightarrow e^+e^-$ and $\omega \rightarrow \pi^0e^+e^ \phi \rightarrow e^{-}e^{-}$ and $\phi \rightarrow \eta e^{-}e^{-}$ $\rho \rightarrow e^+e^-$ 10⁻² $\eta^{-} \rightarrow \gamma e^{+} e^{-}$

With 50um resolution, VTX separate D and B and reject BG contribution

4.5 p_⊤ [GeV/c]

(e[†] + e⁻)/2

Data

Cocktail Total Cocktail components: $\pi^0 \rightarrow \gamma e^+ e^-$

v conversion $\eta \rightarrow \gamma e^+ e^-$

 $\omega \rightarrow e^+e^-$ and $\omega \rightarrow \pi^0e^+e^-$

n'→γe⁺e⁻ $\rho \rightarrow e^+e^-$

Physics Motivation

Measurement in p + p, d + Au and Au + Au Collisions

Single Muons measurements:

- Precision heavy flavor and hadron measurements.
- Separation of c and b in semi-leptonic decays via decay kinematics.
- Improve W background rejection.

Dimuons measurements:

- Separation of ψ' from J/ ψ at forward rapidity.
- $B \rightarrow J/\psi$, golden channel to measure B cross section.
- First Drell-Yan measurement at RHIC.

Physics FVTX Can Access:

- Energy loss mechanism in hot dense medium (Heavy flavor R_{AA}, v₂)
- Cold nuclear effects (Heavy flavor R_{dAu})
- Gluon polarization $\Delta G/G$ (Heavy flavor A_{LL})
- Sivers function, higher twist (Heavy flavor A_N)
- Crucial test of QCD universality (Drell-Yan A_N)

Drell-Yan measurement

FVTX + new muon trigger will open up wide variety of physics opportunities from forward arm!

Slide from Zhengyun You, RBRC, 3/8/2011

Signal / Background

improvements S/B improvement with FVTX cuts

2

3

p_ [GeV]

5

6

Zhengyun You, RBRC, 3/8/2011

10 years

Some thoughts on future detectors

- Multipurpose, flexible—ready to address new questions as they arise!
- Uniform, compact
- Two multipurpose detectors? One optimized for hadronic/nuclear collisions with secondary capabilities in e+A, e+p; other vice versa? (Challenging to optimize for both!)
- Staged implementations?
- Renewed collaborations!
 - Major new program should attract new collaborators!

sPHENIX strawman

dimensions, technology, additional capabilities still under investigation

Target Physics

- Dynamical Origin of Spin Dependent Interactions -> DY vs. SIDIS
- New probes of Longitudinal Spin Effects -> Direct g
- Measurements with polarized 3He (different valence quark components) and higher energy (sqrt(s)=650 GeV by upgrading DX magnets)

p-³He collision

