FoCal Trigger simulation

University Grenoble Alpes University of Tsukuba RIKEN (JRA)

Takuya Kumaoka

T.Kumaoka

Pi0/Gamma trigger

New Progress

- Test z direction sum (tower)
- Single photon / pi0 simulation

Single Events pT flat: 0-20 GeV/c 3.0 < η < 6.0 (FoCal 3.4 < η < 5.8)

Gamma Event

Single Gamma 6 event samples

T.Kumaoka

Pi0 Event

Single PiO 6 event samples

4/11

T.Kumaoka

Trigger Decision

Find a tower that has the highest deposit energy or pT.
(pT = deposit energy / sinθ)
Trigger events that there is a tower having deposit E/pT over threshold.

 \rightarrow Determine the threshold value of deposit E/pT based on the data reading rate

T.Kumaoka

Check threshold deposit energy for readout rate

- 1 HGCROC:32bit x 72 ch = 2304 bit
- Read 1 HGCROC by GBT (3.2 Gbps)
- 1 aggregator board has 20 HGCROC

-> 3.2x10^9 / 20 / 2304 = 70 kHz

Gamma Deposit Energy Trigger Efficiency

T.Kumaoka

2022/08/22 FoCal trigger simulation Meeting

7/11

Check threshold deposit pT for readout rate

2022/08/22 FoCal trigger simulation Meeting

T.Kumaoka

Gamma Deposit Energy Trigger Efficiency

T.Kumaoka

PiO Deposit pT Trigger Efficiency

Tower unit

T.Kumaoka

2022/08/22 FoCal trigger simulation Meeting

10/11

Overwrap Unit Tower

-> We expect to recover the particle that go through out the tower

Unit: Sum of cells on a layer Tower: Sum of units for z direction

Tower combining 9 cells unit having highest energy

Compare efficiency with tower kinds

- Motivation: (n)PDFs at low x
 - Window to the unexplored regime of $x \sim 10^{-6}$ and low $Q \sim 4 \text{ GeV}/c$
 - Non linear evolution due to high gluon densities
 - Access 2–3 orders of magnitude smaller x at low Q^2 than fRHIC and EIC
 - Unique opportunity in the foreseeable future (well before LHeC and FCC)

- Layer depth mainly contribut.

T.Kumaoka

Miss Events

Fill a position gammas in miss event at 7000 mm (x = 7000. * (px/pz), y = 7000. * (py/py))

(Every event has a hit point on FoCal.So even if the point is on the out of FoCal region at 7000 mm, the particle has hit inner or outer layer.)

Edge Effect

Reduce edge region events

The efficiency is recoverd but it still very low and we cannot see threshold curve

T.Kumaoka