sPHENIX実験-INTTシリコン検出器用 マイクロ同軸製読み出しケーブルの開発

理研^A, 理研BNLセンター^B, 立教大^C, 都立産技研^D, 奈良女子大^E, JAEA^F **中川格**^A, 秋葉康之^B, 今井皓^C, 加藤智也^C, 近藤崇^D, 宍倉遼太^C, 下村真弥^E, 杉山由佳^E, 高濱瑠菜^E, 並本ゆみか^E, 糠塚元気^B, 長谷川勝一^F, 波多美咲^E, 蜂谷崇^{A,E}, 藤木一真^C, 渡部舞^E

RHICのスケジュールと今後の予定

sPHENIX建設状況

日本グループが参画するIntermediate Silicon Tracker (INTT) の現状

<u>シリコンラダー(組み立て:BNL&台湾)</u>

62 LVDSペア

400MHz

•

- シリコンセンサー 📻 👝 🧰 (浜松フォトニクス社製)
- 高信号密度伝送ケーブル

INTTバレル4層目の組み立てがBNLで進行中

1層目:24ラダー 2層目:32ラダー 合計56ラダー

Technical Challenge ~ INTT Readout Cable ~

Technology Choices 1.フレキシブルプリントケーブル(FPC)		FPC	FFC	μCC
2. ノラットノレキシノルケーノル (FFC) 3. μ同軸ケーブル (μCC) FFC	信号線 ピッチ [um]	60	500	250
FPC FPC	シールド	Shielded	Not Shielded	Shielded
	柔軟性	2D	2D	3D
右X 5次ルの条軟 ケーブルの柔軟性比較	土			7

Bus Extender + Conversion Cableの信号伝送性能

FPCよりも信号線路の断面積は大きいため、入射損失はµ同軸の方が少ない。

µ同軸ケーブルの構造

2. Construction and material Material Breakdown of micro-Coax

Ite	m	Unit	Specified Value	
Inner conductor	Material	-	Silver plated Copper Alloy wire	
	AWG size		44	
	Stranding	No./mm	7/0.02	
	Dia (annrox)	mm	0.06	
Insulation	Material	-	PFA	
	Thick.(nom.)	mm	0.037	_
	Dia. (approx.)	mm	0.134	
	Color	-	Black	
Outer Conductor	Material	-	Tinned copper alloy wire	
	Туре	-	Wrap(Right-hand lay)	
	Strand Dia. (approx.)	mm	0.02	
Jacket	Material	-	PFA	
	Thick.(nom.)	mm	0.025	
	Dia. (Max.)	mm	0.22(0.23)	
	Color	-	Brown, Green	

PTFE 化学式

9

PFA(フッ素樹脂)=**パーフルオロアルコキシアルカン** 四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂

http://www.diced.jp/~KAZU/syousya.txt.htm

絶縁体フッ化樹脂の放射線耐性

https://www.osti.gov/servlets/purl/1467983

mild to moderate damage, utility is often satisfactory moderate to severe damage, use not recommended

一般的にフッ化樹脂は放射線耐性が弱いとされる

10

µ-同軸ケーブルの放射線耐性テスト

RIKEN Accelerator-driven compact Neutron Source: RANS実験施設

2022年3月に9時間照射 合計中性子フラックス:1.7×10¹³ 放射線耐性を評価する。

2

放射線によるダメージ

照射前

外観検査の範囲では、明らかなダメージは見受けられない。今後伝送特性などを測定する。

まとめ

- sPHENIX実験-INTTシリコン検出器用の読み出しケーブルを開発した。
- 高信号線密度・高伝送性能、且つ3次元の柔軟性を満たす技術として、マイクロ同軸を採用した。
- •試作の結果、これらの要求性能を満たすことを確認できた。
- •残す課題として、放射線耐性を検証する。