[RIBF ULIC MiniWS037] [Rearranged schedule] Combining Nuclear Theory and Machine Learning for fundamental studies and applications

Asia/Tokyo
RIBF 2F Room 203 for 29th Nov and Room 201 for 30th (RIKEN Wako Campus)

RIBF 2F Room 203 for 29th Nov and Room 201 for 30th

RIKEN Wako Campus

Sota Yoshida (Utunomiya University)
Description

In recent years, remarkable progress has been made in combining machine learning with nuclear models. Some of these studies have a significant impact on physics at RIBF: The density functional theory and machine learning have been combined to predict the mass and lifetime of r-process elements, and the nuclear optical model and machine learning are combined to predict neutron-nucleus scattering. Thus, the combination of machine learning and nuclear modeling has great potential.
This mini-workshop will bring together the researchers to discuss how ML can predict physical quantities (mass, lifetime, and/or (n,γ) cross-section) related to the r-process more accurately and what experiments should be proposed to improve the prediction accuracy. We will also explore new opportunities for collaboration.

Registration
Registration
Contact (Masaaki Kimura)