COMPASS Polarized Target 2002 - 2022

Norihiro DOSHITA Yamagata University

Norihiro DOSHITA

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

COMPASS set up

Beam :

Polarized lepton beam : μ^+ , μ^- 50-280 GeV/c (80% polarization @ 160GeV) Hadron beam : π^+ , π , K⁺, K⁻,P

Target :

Polarized proton and deuteron target Liquid hydrogen target Nuclear target Many combinations of the beam & the target

History of COMPASS PT

Year	Spin	Material	Cell configuration	Program (with muon beam)	
2002 – 2004	L, T	⁶ LiD	L: 60-60 cm, D: 3 cm	∆g/g, TMD	
2006	L	⁶ LiD	L: 30-60-30 cm, D: 3 cm	∆g/g	Dheed
2007	L, T	NH ₃	L: 30-60-30 cm, D: 4 cm	TMD, g1	Phase
2010	Т	NH ₃	L: 30-60-30 cm, D: 4 cm	TMD	
2011	L	NH ₃ (new)	L: 30-60-30 cm, D: 4 cm	g1,A1 with 200 GeV muon	
2014 - 2015	Т	NH ₃	L: 55-55 cm, D: 4 cm	TMD (DY with pion beam)	Î
2018	Т	NH ₃	L: 55-55 cm, D: 4 cm	TMD (DY with pion beam)	Phase2
2021 - 2022	т	⁶ LiD	L: 30-60-30 cm, D: 3 cm	TMD	

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

COMPASS PT system

Dilution refrigerator

- 50mK
- 350mW cooling power at 300mK

Magnet

- 2.5T solenoid (Polarization, longitudinal) 50 ppm homogeneity
- 0.6T dipole (Transverse)
- 180mrad acceptance

Target cell

- 3 cells (30, 60, 30cm long) or 2 cells (55, 55 cm long)
- Diameter 3 or 4 cm

Microwave

- 2 sets of EIO (20W)
- 3 sets of Gunn Diode (3W)

NMR

• 10 cannels (3, 4, 3) or (5,5)

COMPASS PT system

Dilution refrigerator

- 50mK
- 350mW cooling power at 300mK

Magnet

- 2.5T solenoid (Polarization, longitudinal) 50 ppm homogeneity
- 0.6T dipole (Transverse)
- 180mrad acceptance

Target cell

- 3 cells (30, 60, 30cm long) or 2 cells (55, 55 cm long)
- Diameter 3 or 4 cm

Microwave

- 2 sets of EIO (20W)
- 3 sets of Gunn Diode (3W)

NMR

• 10 cannels (3, 4, 3) or (5,5)

Dilution refrigerator

Downstream of mixing chamber

EIO microwave system

Gun system in 2022

Microwaves

1.5 m far from DR Cannot be closer due to fringing field

Generation test in 2020

Norihiro DOSHITA

Target material loading

- About 400 g of 6LiD material in to 3 cells in 2022
- Material irradiated in 2000
- Storage in LN2 dewar
- Loaded under 80 K
- Collect materials for each cell independently after the data taking

Loading done in the LN2 bath

port of material cell

Target materials production

DNP needs paramagnetic centers into solid target materials

- <u>Radiation dope method</u>

NH3 material for COMPASS

NH3 melting point is 195K 2-3 mm beads size 20 MeV e- beam irradiation in the liquid Argon bath (87K) paramagnetic centers of ~10^19 /cm3 doped

6LiD material for COMPASS

2-3 chips size 20 MeV e- beam irradiation in 190 K bath 2 x10^19 /cm3 doped

- <u>Chemical dope method</u>

Butanol (C₄H₉OH), D-Butanol (C₄D₉OD) -EHBA (Na[C₁₂H₂₀O₇Cr(V)]) introduced -Finland D36 (AH110355) newly found (NIM A 526(2004)43)

COMPASS Target material NH3

- NH₃ used as proton target (produced in 1996, 2010)
- Free radicals are produced by electron beam in the liquid argon.
- Critical temperature is 117K (W. Meyer, 1984 Bonn)

The old material produced in SMC (1996) \rightarrow 2007,2010

- Stored for more than 10 years in LN2
- Material property changed color : violet → pale free electron density : 6 x 10¹⁹ → 4.3 x 10¹⁹ /cm³ in 2007 → 2010 relaxation time : 500h at 0.5T → 4000h at 0.6T → 9000h at 0.6T

Norihiro DOSHITA

• New target produced in 2010 autumn.

Deuteron target materials

<u>Figure of Merit</u> $PT_{FOM} = f^2 \times P_T^2 \times \rho \times F_f$

	ND ₃	D- butanol	⁶ LiD
P_T	0.30 - 0.40	0.80 **	0.55 (D)
			0.54 (⁶ Li)
ρ	1.00	1.12	0.820
f	0.300	0.238	0.250 (D)
			0.250 (⁶ Li)
F_{f}	0.58	0.62	0.52
PT _{FoM}	1 – 1.8	5.4	6.9

f: dilution factor ρ : density F_f : packing factor

-Normalized by ND₃ . -Magnetic field 2.5T - Relaxation time ⁶LiD 1500h at 0.42T and 60 mK.

** S.T. Goertz et al, NIM. A 526 (2004) 43.

NH3 weight measurement in 2018

- Material kept in Liq. N2 bath
- Four socks (two for upstream and two for downstream)
- 10 hours for one measurement
- Kept the sock below 100 K

	Weight (g)	Packing factor
upstream	329 +/- 1	0.558 +/- 0.002
downstream	310 +/- 1	0.526 +/- 0.002

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam- NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

Dynamic Nuclear Polarization (DNP)

Polarization P of spin ½ at thermal equilibrium (boltzmann distribution)

D —	tanh	$\left(\underline{\mu B} \right)$
Г —	ιαππ	$\left(\overline{K_B T} \right)$

 μ : magnetic moment B: magnetic field K_B: boltzmann constant T: temperature

Norihiro DOSHITA

Polarization at thermal equilibrium@2.5T

	electron	proton	deuteron
4.2 K	66.4 %	0.061 %	0.012 %
1.0 K	99.8 %	0.26 %	0.052 %
0.1 K	99.9 %	2.6 %	0.52 %

DNP: Transfer the high electron polarization to nucleon by MW

- Free radical dope to Material (NH₃, ⁶LiD)
- Electron spin relaxation < Nucleon spin relaxation

Dynamic Nuclear Polarization

Dynamic Nuclear Polarization

TE analysis for deuteron in 2022

1 % accuracy In total a few %

■1.00K

Polarization determination at DNP

$$P = E \cdot S$$

The enhancement factor can be measured By TE calibration at 2.5 T.

$$P_{TE} = ES_{TE}$$

$$S_{TE} = \frac{1}{E} P_{TE}$$

 $P_{TE=1K} = 0.0522789 \%$ $P_{DNP} = ES_{DNP}$

Polarization can be determined with DNP NMR signal.

ured	Coil 1 2 3 4 5 6 7 8 9 10	1/E -10.47 -24.53 -24.31 -19.87 -22.36 -20.39 -36.62 -29.83 -31.9 -17.13	d1/E 0.12 0.11 0.074 0.077 0.097 0.097 0.079 0.084 0.073 0.12 0.1	d1/Erel -1.2 -0.47 -0.3 -0.39 -0.43 -0.23 -0.23 -0.25 -0.37 -0.59	E dE -0.09548 -0.04077 -0.04113 -0.05033 -0.04472 -0.04905 -0.0273 -0.03352 -0.03135 -0.05836	0.0011 0.00019 0.00013 0.0002 0.00019 0.00019 6.3e-05 8.2e-05 0.00012 0.00034	
-1.2 -1.3 -1.4 -1.5 -1.5 -1.6 -1.7 -1.8 -1.9 -2		nhancemen	t factor	29 K = coefficie	ent	AU 2 Datensatz : Tabelle Funktion : A'x Chi*2/doF = 2.940 R*2 = 9.989404e-01 A = -3.6623e+01+/-8.4	e-02 0.99 K
0	.035	C	0.04	0.0	045	0.05	0.055
	Norihiro	DOSHITA			Р	1	O'OK

E = Enhancement factor

TE deuteron NMR measurements (1.0 K)

Coil #7 at 1.0 K

Norihiro DOSHITA

Gain factor measurement

coil	gain2015/2018	gain2022	2022/2015	cell average
1	216.201	214.12	0.990	
2	214.013	213.13	0.996	1.000
3	211.979	214.86	1.014	
4	213.52	214.38	1.004	
5	212.402	207.29	0.976	
6	211.6	208.94	0.987	0.995
7	213.843	216.14	1.011	
8	212.995	211.61	0.993	
9	215.306	211.09	0.980	0.994
10	213.928	215.77	1.009	

Polarization build up in 2022 (Deuteron)

NH3 Polarization Measurement

Areal NMR signal is in proportion to its polarization.

Polarization build up in 2018 (Proton)

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 - Relaxation time
- Other measurements

Beam intensity : 10^8 /s for 5 s and then no beam for 10 s or more in 2018

Relaxation time

production	Material	Magnetic field	Relaxation time
2002 - 04	⁶ LiD	2.5 T	>15000 h
2006	⁶ LiD	1.0 T	~ 10000 h
2002 - 04	⁶ LiD	0.4 T	~ 1500 h in 2004
2022	⁶ LiD	0.6 T	~ 3000 h for +, ~ 5000 h for -
2007	NH ₃ (SMC)	0.6 T	~ 4000 h
2010	NH ₃ (SMC)	0.6 T	~ 9000 h
2015	NH ₃	0.6 T h-beam	~ 1200 h for + , ~ 1000 h for -
2018	NH ₃	0.6 T h-beam	~ 1200 h for + , ~ 1000 h for -
2018	NH ₃	0.0 T	~ 11 min. for positive
			~ 7 min. for negative

Relaxation time in 2018 vs accumulated incoming pions

Outline

- COMPASS experiment
- COMPASS PT system
 - 6LiD with muon beam
 - NH3 with hadron beam
- Polarization
 - DNP
 - Polarization determination
- Long term operation
 Relaxation time
- Other measurements

EST Concept

- Equal Spin Temperature

-- Spin temperature can be applied during DNP.

-- The spin temperature is shared with other nuclei.

- Polarizing deuteron at first
- Measured 6Li and 7Li polarization
- \rightarrow Support the EST concept

Fig. 6. The polarizations of the ⁶Li and the ⁷Li nuclei versus that of the deuteron. The closed (open) squares are the measured polarization of ⁶Li (⁷Li). The lines are the prediction by EST concept. The measurements are consistent with the EST

concept. Norihiro DOSHITA

NIMA498(2003)101₃₈

Relaxation time at 0 T

EPR (Electron Paramagnetic Resonance)

Carbon temperature sensor : absorption of MW : high resistance=low temp.

<u>condition</u>

- MW power is constant
- Scanning magnetic field
- Mag. field corresponds to MW freq.
- MW Absorption : DNP \rightarrow increasing resistance

Optimization of DNP

Summary

- COMPASS PT has been running for 20 years.
- 6LiD and NH3 have been used as deuteron and proton target material.
- 2.5 T and 100 mK combination
- Stable and high polarizations provided for 20 years

Back up

Accuracy of Polarization

Deuteron 2003

Table 3

Error $(\Delta P/P)$ estimated for the polarization measurement in 2003

	upstream (%)	downstream (%)
TE calibration error	3.38	1.84
Circuit nonlinearity	< 0.5	< 0.5
Enhanced signal fitting	0.1	0.1
Field polarity	0.2	0.2
Field shift	0.18	0.07
Q-curve off-centering	0.15	0.17
LF gain variation	0.087	0.037
Subtotal	3.43	1.83
Microwave effect	0.1	0.1
Total	3.5	1.9

proton 2015 and 2018

Table 1: Results of the TE calibration and the empty cell measurement in 2015 and in 2018.

	201	15	201	18
Coil	Calibration	Statistical	Calibration	Statistical
#	constant	error (%)	constant	error (%)
1	-38.13	0.52	-55.38	0.41
2	-17.71	1.70	-21.40	0.90
3	-27.36	0.47	-47.26	0.33
4	-21.33	1.14	-23.73	1.79
5	-33.40	0.22	-43.10	0.39
6	-15.06	1.20	-13.39	0.98
7	-9.00	1.77	-18.63	1.18
8	-17.55	0.36	-33.67	0.43
9	-14.70	0.58	-13.91	1.26
10	-36.22	0.37	-42.25	0.57

Souce of systematic uncertainty	ΔP/P [%]
Circuit non-linearity	0.7
Off-centering of Q-curve for TE	0.2
Off-centering of Q-curve for enhanced signal	0.2
Ground-line fitting	0.2
Fitting for TE signal	1.0
LF gain variation	0.05
Temperature measurement	0.8
Total	3.2

Radiation damage

Additional radicals are produced by beam.

W. Meyer et. al., Proceedings of the 4th international workshop on Polarized target materials and techniques (1984)

The polarization drops to 1/e of maximum polarization is 7 × 10^15 particles/cm2 (electrons) for ammonia For Radiation effect to polarization at 1K and 2.5T

For safe margin, we propose

To keep flux of the pion beam below 1×10^{14} /cm2 for 1 year.

Protection of PLC CPU for the magnet

Not only material but also PLC CPU suffered from radiation (neutron).

Concrete : For high energy neutrons
 Polyethylene : for low energy neutrons
 Boron-carbid : to stop thermal neutrons

No interruption in 2018

Top cover of Polyethylene with Boron-carbid

 $\sim 10 \,\mu \, \text{Sv/h}$ area

Boronarbid

ELVA -1製2W Gunn ダイオード発振器

2020年12月の発振テスト風景

- Covid19で納期が遅延
- ・ 最大4W出力
- 周波数変調機能
- ・ 狭いターゲットプラットフォームに設置可能
- 20mTのもとでのテスト
- ・ 2台追加導入:テスト中

設置風景 1.5mの導波管 数百mW到達の確認

標的物質

- 2000年に制作された⁶LiD
- ・ 電子ビーム照射による不対電子導入
- ・ 2006年以来の偏極

核子構造とTMD PDFs

・ 核子の内部構造

クォークとグルーオンが構成要素で詳細は解明され ていない

- クォークが内在して持つ横方向運動量k_Tを 考慮した8つのTransverse Momentum Dependent Parton Distribution Function (TMD PDF)
- 準包括的深非弾性散乱(SIDIS) COMPASSではミューオンビームと横偏極重陽子標 的を用いる
- ・ d-クォークのSivers関数 $f_{1T}^{\perp}(x, k_T^2)$ 、 Transversity関数 $h_1(x, k_T^2)$ のデータ収集
- Transversity関数とクォークテンサー
 チャージとの関係にも注目

核子とクォークのスピン状態に応じたPDF

Universality of TMD PDFs

Because Sivers and Boer-Mulders PDFs are "Timereversal odd", they are expected to change the sign when measured from SIDIS or from DY:

$$f_{1T}^{\perp}|_{DY} = -f_{1T}^{\perp}|_{SIDIS} \qquad h_1^{\perp}|_{DY} = -h_1^{\perp}|_{SIDIS}$$

We have the opportunity to test this sign change using the same spectrometer and the transversely polarized target at COMPASS.

