19th meeting on high-energy QCD and nucleon structure 2nd September 2022 @ Yamagata university

Polarized targets for spin-contrast-variation neutron scattering

Daisuke Miura (RIKEN, Spin-isospin laboratory)

Table of contents

Introduction

- Thermal Neutron scattering
- Spin-contrast-variation

2 Motivation

- Development of

SCV neutron diffractometry

Results

Introduction | Neutron energy

Introduction | Neutron energy

Introduction | Characteristics of neutrons

- Sensitivity of the neutron cross section to lighter elements
- Sensitivity to isotopes
- Two types of scattering

Neutron scattering | Spin dependence of proton

Coherent (spin non-flip) and Incoherent (spin flip) scattering

D. Miura Polarized targets for spin-contrast-variation neutron scattering

Spin-Contrast-Variation (SCV) neutron scattering

Methods to add free electrons for DNP

Glassy samples

Dissolution of free radicals into the sample ex) alcohol, water+glycerol, etc.

Polymers

Vapor absorption of free radicals ex) polyethylene, rubbers, etc.

Crystalline samples

- Irradiation of electron-beam to generate latice defect
 ex) NH₃, ⁷LiH
 Niinikoshki, Phys. Lett. A, 1979
 - P_H > 90% (2.5 T, 0.3K)
- Substitution particular nuclei with paramagnetic centers
 ex) LaAlO₃:Nd³⁺ P.Hautle and M. linuma, NIMA, 2000.

P_{La} > 50% (2.3 T, 0.3K)

- Growth or soak crystals in a matrix with free radicals $_{J. Pierce, PSTP 2017}$ ex) Lysozyme doped with TEMPOL $P_{H} > 20\%$ (2.5 T, 0.3K)

Examples of SCV neutron scattering

Examples of SCV neutron scattering

Motivation & Results

Introduction

- Thermal Neutron scattering
- Spin-contrast-variation

Motivation

- Development of

SCV neutron diffractometry

2

Results

Dispersion of micro-size crystalline into DNP matrix A. Rossini, et al., J. Am. Chem. Soc., 2012., D. Mlura at al., PTEP 2019.

Glassy samples

Free radicals are dispersed in glassy samples.

Crystalline samples

Free radicals cannot be penetrated into the crystal

Dispersion crystalline in glassy

- (1) Polarization transfers from free-electrons to nucleus in crystal
- (2) Nuclear polarize via spin diffusion in crystal

Sample

Crystalline samples

- L-glutamic acid 500 mg
 - as known structure factor

Matrix

deuterated polystyrene 1000 mg

- deuterated : to observe from scattering from hydrogen in the crystal

Free radical

TEMPO methacrylate

 2×10^{19} spin/g for deutrerated polystyrene

coil to measure NMR

SCV neutron diffractometry @J-PARC MLF (BL15)

D. Miura Polarized targets for spin-contrast-variation neutron scattering

Results of SCV neutron diffractometry

Changes in peak intensity with proton polarization at each Q value

D. Miura Polarized targets for spin-contrast-variation neutron scattering

Proton polarization dependence

Calculation based on structure factor

$$I(Q, P) \propto \left| (1 + \kappa P) F_{\rm H}(Q) + F_{\rm others}(Q) \right|^2$$

- Proton polarization was determined +/-15% from incoherent scattering.
- Calculation and measurement results are normalized using peak#4's intensity at polarization.

Good agreement with calculation

Extraction hydrogen structure factor

- (a) Positive Negative $\propto |F_{\rm H}(\boldsymbol{Q})|^2 + \operatorname{Re}[F_{\rm H}(\boldsymbol{Q})F_{\rm others}(\boldsymbol{Q})]$ (b) Positive + Negative - 2*unpol $\propto |F_{\rm H}(\boldsymbol{Q})|^2$
- (c) (a) –(b) $\propto \operatorname{Re}[F_{\mathrm{H}}(\boldsymbol{Q})F_{\mathrm{others}}(\boldsymbol{Q})]$
- \bigcirc Good agreement with calculation

SCV can extract hydrogen structure factor. $\triangle Poor S/N$

Apparatus and sample preparation need improvement.

Conclusion

SCV neutron scattering

- Technique that can extract the hydrogen structure factor owing to the cross section for hydrogen changes with the polarization
- Used as a structural analysis tool for non-crystalline samples

Demonstration of SCV neutron diffractometry

- Glutamic acid dispersed including TEMPO methacrylate (15% proton polarization @3.3T, 1.2 K)
- Change of diffraction peak intensities according to the proton polarization
- Succeeded in separating diffraction peaks into hydrogen structure factors and other atoms structure factors

Future plan

Development of SCV-neutron scattering using triplet-DNP

Backup

Baseline

D. Miura Polarized targets for spin-contrast-variation neutron scattering

XRD

