Nuclear spallation Simulation in the PHENIX Muon Arms

Oleg Eyser UC Riverside Single bunch analysis (run10)

Spallation

Nuclear spallation

Setup in GEANT4

- Complete south muon arm with central magnet yoke
- Complete isotope mix for materials
- o QGSP_BERT_HP
 - optimized neutron thermalization
 - **o** Bertini cascade for spallation
- o ABLA
 - $\circ~$ detailed modeling of spallation process
 - \circ mean free path of particle in medium
 - intranuclear cascade, pre-equilibrium, equilibrium

PYTHIA input

Neutron spectra

 SS310 does not increase the thermal neutron flux
Thermal neutrons behave gas-like

Thermalization times

Times of Flight

- Times in Station 2 looks different than in Stations 1 & 3 (no G10 plates)
- Neutron mean velocities:
- $\circ v_{thermal} = 2.2 \frac{km}{s}$ $\circ \quad \Delta t(z_{St1} \quad zS_{t2}) = 500 \ \mu s$ $\circ v_{fast} = 14000 \frac{km}{s}$ $\circ \quad \Delta t(z_{St1} \quad z_{St2}) = 72 \ ns$ $|z_{St1} z_{St2}| < |zSt_2 z_{St3}|$ All thermal neutrons passing through St2 have thermalized far from the detector

High energy photons

- Everything above a few eV
- Late / leaking showers in material
- De-excitation from spallation compound nuclei

Additional SS310

Additional SWX205HD7

Photon energies

The interaction package reproduces the gamma emission from neutron capture in ¹⁰B
prev. slide: thermalization is a lot faster than G10

30₃ absorber

- **Neutron capture in lithium** Ο Li⁶ σ=940 barn
 - Li⁷ σ=0.045 barn
- Natural lithium σ =70.5 barn \bigcirc
- Enriched lithium σ =893 barn \bigcirc
- **Absorption length** Ο
 - \circ Enriched λ =0.33 mm
 - \circ Natural λ =4.3 mm

84.8

112.0

4.6%

19.6%

34 cm < r < 112 cm (last layer SS310) \triangleright

ш

8 kg enriched Li_2CO_3 for both arms @ UIUC >

1.0

0.53

 ρ =2.1 g/cm³ \rightarrow V=3800 cm³ \succ

Thermal neutron flux

Area of absorber is more important than thickness

Thermal neutron origins

• Relative to run11 setup

- No clear edge can be seen where the lithium absorber ends
- Total shadowing of the absorber is significantly smaller for reduced area of absorber (rotational symmetry of detector)
- Straight lines are not correct for thermal neutrons

Thermal neutron flux II

• The absorber has a slightly larger effect on downstream going neutrons.

More effective absobers?

Absorber in the piston hole

- \circ Li₂CO₃ absorber at the <u>opening</u> of the piston hole
- Using all UIUC Li₂CO₃
- 22.0 cm radius
- \circ **1.2 cm thick**

 \Rightarrow neutrons do not thermalize in the piston hole

Photons in MuTr St1

Summary

- New steel absorber is not increasing the thermal neutron flux anywhere in the muon arms
- Additional neutron absorber scenarios are less effective than expected
- Large area of lithium absorber seems to work best
- Neutrons do not thermalize close to their origin
- Additional photon absorber may be beneficial
- Finalize absorber studies/scenarios
- Finalize cross checks (ABLA model)
- Finish analysis note
- \Rightarrow CVS: offline/analysis/MuonArmNeutrons/