The Spin Database

Spinfest 2011 Andrew Manion

2. What is in there, in the spin database?

- Most stuff 120 element arrays (for 120 crossings)
 - spinpatternblue, spinpatternyellow, at IP12 (not PHENIX)
 - polarblue, polaryellow (even though there is just 1 # per fill in blue and yellow)
 - uncertainties for polarizations also
 - GL1p scalers bbcvertexcut, bbcwithoutcut, zdcnarrow, zdcwide (be careful, because these names usually don't match the actual inputs for a given Run)
- Other stuff
 - crossingshift
 - runnumber
 - o fillnumber
 - qa_level

3. Where does that data come from?

- spinpatternblue, etc.: data from CAD on what directions the beams are polarized in
- polarblue, etc: online (pC) number eventually replaced by # offline analysis of CNI polarimeter data
- bbcvertexcut, etc (GL1p scalers): counted by scaler boards
- crossingshift: correction for spinpatternblue, etc., already applied to these if calibration is done!
- qa_level: input by expert who is filling the DB to separate different revisions
- Be careful! No shift given for bbcvertexcut, etc.

4. Online Calibration procedure

- Process some small # events online
 - Each event has
 - a crossing id (what IT thinks its crossing id is!)
 - a spin pattern (more or less. data from V124s corresponding to what spin pattern was actually being delivered when the event was taken.)
 - trigger bits fired (bits fired when the event was taken.)
- We also know what the spin pattern should look like across all crossings, with abort gap, etc, in the usual place (from CDEV information)
- So there are two ways to calibrate the data
 - 1. Make the event (V124) spin pattern vs. crossing id line up with the intended (CDEV) spin pattern vs. crossing id
 - 2. Make low spots (few triggers) in the trigger distribution vs. crossing id line up with "unfilled" bunches in the intended spin pattern (CDEV) vs. crossing id
- Either is equivalent to a crossing id shift in the event data

5. Online Calibration Code location

- If you want to look at it, the locations in CVS are
 - online/calibration/onlcal/subsystems/xingshift/
 - offline/packages/xingshift/

6. What about GL1p scaler data?

- So what about the GL1p scaler data (bbcvertexcut, etc.) in the database, with no crossing shift?
 - GI1p scaler data is counted in step with other event data, so it should have the same shift
 - in other words, shift calculated for spin patterns should also be applied to GL1p scaler counts.
- In practice, we do an online calibration to get the crossing shift, and apply that to the spin pattern immediately
 - then later, or by the analyzer, that shift is also applied to the GL1p scaler counts
- Some offline work done to make sure online calibration worked correctly

7. How to access the DB?

- You can access the spin database information in at least two ways:
 - 1. use database commands. e.g. on rcf try
 - psql spin_phnxdbrcf2_A
 - \d spin
 - select spinpatternblue, bbcvertexcut from spin where runnumber=286636;
 - 1. Use library "libuspin" (at offline/packages/uspin/)
 - much easier, can use easily in your own code
- For Run11 (i.e. recent runs), it may be necessary to go to spin_oncal or spin_daq tables to get data
 - and maybe also use a different qa_level

8. Example code snippet with libuspin

- full snippet at https://www.phenix.bnl.gov/WWW/p/draft/manion/spinDBexample/
- Important lines:
 - SpinDBOutput spin_out("phnxrc");
 SpinDBContent spin_cont;
 - your objects
 - spin_out.StoreDBContent(runnumber,runnumber);
 - gets information from the DB
 - spin_out.GetDBContentStore(spin_cont,runnumber)
 - stores DB information in your spin_cont object
 - spin_cont.GetSpinPatternBlue(i_cross);
 - and similar commands for all other DB information you might need

9. Running the example (I encourage you to try it)

```
root [0] gSystem->Load("libuspin.so");
root [1] .L
/direct/phenix+WWW/p/draft/manion/spinDBexample/libuspinsn
ippet.C
root [2] snippet(286636);
Retrieved spin content from DB.
fillnumber is: 10806
spin blue, spin yellow of crossing 7 are: -1, -1
GL1p scaler counts for crossing 7 are: 4626136, 276007550,
35978, 1328848
end of example
root [3]
```

10. The End