II. Model predictions and phenomenology of PDFs (- continued -)

Comparative analysis of transversities & longitudinally polarized distributions

We are interested in the difference between

$$\Delta q(x)$$
 and $\Delta_T q(x)$

The most important quantities characterizing these are their 1st moments, called

axial charge g_A & tensor charge g_T

$$g_A^{(I=0)} = \int_0^1 \left\{ \left[\Delta u(x) + \Delta d(x) \right] + \left[\Delta \bar{u}(x) + \Delta \bar{d}(x) \right] \right\} dx$$

$$g_A^{(I=1)} = \int_0^1 \left\{ \left[\Delta u(x) - \Delta d(x) \right] + \left[\Delta \bar{u}(x) - \Delta \bar{d}(x) \right] \right\} dx$$

$$g_T^{(I=0)} = \int_0^1 \left\{ \left[\Delta_T u(x) + \Delta_T d(x) \right] - \left[\Delta_T \bar{u}(x) + \Delta_T \bar{d}(x) \right] \right\} dx$$

$$g_T^{(I=1)} = \int_0^1 \left\{ \left[\Delta_T u(x) - \Delta_T d(x) \right] - \left[\Delta_T \bar{u}(x) - \Delta_T \bar{d}(x) \right] \right\} dx$$

understanding of isospin dependencies is crucially important for disentangling non-perturbative chiral dynamics hidden in the PDFs

(A) Naïve quark model

$$g_A^{(I=1)} = g_T^{(I=1)} = \frac{5}{3}, \quad g_A^{(I=0)} = g_T^{(I=0)} = 1$$

(B) MIT bag model

$$g_A^{(I=1)} = \frac{5}{3} \cdot \int \left(f^2 - \frac{1}{3} g^2 \right) r^2 dr, \quad g_A^{(I=0)} = \mathbf{1} \cdot \int \left(f^2 - \frac{1}{3} g^2 \right) r^2 dr$$
$$g_T^{(I=1)} = \frac{5}{3} \cdot \int \left(f^2 + \frac{1}{3} g^2 \right) r^2 dr \quad g_T^{(I=0)} = \mathbf{1} \cdot \int \left(f^2 + \frac{1}{3} g^2 \right) r^2 dr$$

f(r), g(r) : upper & lower components of g.s. w.f.

Important observation

$$\frac{g_A^{(I=0)}}{g_A^{(I=1)}} = \frac{g_T^{(I=0)}}{g_T^{(I=1)}} = \frac{3}{5}$$

in both of NQM & MIT bag model

Comparison between the predictions of MIT bag and CQSM

	MIT bag	CQSM	Experiment
$g_A^{(I=1)}$	1.06	1.31	1.267
$g_A^{(I=0)}$	0.64 <	-> 0.35	$0.330 \pm 0.040 \ (Q^2 = 5 \text{GeV}^2)$
$g_T^{(I=1)}$	1.34	1.21	
$g_T^{(I=0)}$	0.88 <	-> 0.68	
$g_A^{(I=0)}/g_A^{(I=1)}$	0.60 <	-> 0.27	~ 0.26
$g_T^{(I=0)}/g_T^{(I=1)}$	0.60 <	-> 0.56	

CQSM predicts for tensor and axial charges

$$g_T^{(I=1)} \simeq g_A^{(I=1)}$$
, while $g_T^{(I=0)} \gg g_A^{(I=0)}$

expected features for transversities and longitudinally polarized PDF

$$\Delta_T q^{(I=1)}(x) \simeq \Delta q(x)^{(I=1)}, \quad \Delta_T q^{(I=0)}(x) \gg \Delta q^{(I=0)}(x)$$

Then, from

$$\Delta_T u(x) = \frac{1}{2} \left[\Delta_T q^{(I=0)}(x) + \Delta_T q^{(I=1)}(x) \right]$$

$$\Delta_T d(x) = \frac{1}{2} \left[\Delta_T q^{(I=0)}(x) - \Delta_T q^{(I=1)}(x) \right]$$

together with the analogous relation for the longitudinally polarized PDFs,

We anticipate that

$$egin{array}{rl} |\Delta_T d(x)| &\ll & |\Delta d(x)| \ |\Delta_T u(x)| &\simeq & |\Delta u(x)| \end{array}$$

CQSM predictions evolved to $Q^2 = 2.4 \,\text{GeV}^2$

energy scale corresponding to Anselmino et al's phenomenological fits

Comparison with global fit by Anselmino et al.

Comparison with global fit by Anselmino et al.

Caution about strong scale dependence of transversity around model energy scales

• M. W., Phys. Rev. D79 (2009) 014033.

Comparison of various model predictions for scale independent ratios

• M. W., Phys. Rev. D79 (2009) 014033.

tensor-charge ratio

axial-charge ratio

scale independent !

nearly scale independent !

Short summary on the transversity distributions

When one compares the model predictions of transversities with the empirical ones extracted from high-energy measurements, one must be very careful about the strong scale-dependence of transversities in the nonperturbative low energy domain.

A Model predictions are very sensitive to the starting energy scale of evolution !

Ţ

A safer comparison would therefore be made for the ratios like

$$\Delta_T u / \Delta_T d$$
 and/or $\Delta q_T^{(I=0)} / \Delta q_T^{(I=1)}$

which are scale-independent, because of the flavor-independent nature of evolution equations for chiral-odd transversities, which does not couple to gluons !

Chiral-odd twist-3 distribution function e(x)

- M. W. and Y. Ohnishi, Phys. Rev. D67 (2003) 114011.
- Y. Ohnishi and M. W., Phys. Rev. D69 (2004) 114002 .

Why is it interesting ?

- $\int_{-1}^{1} e(x) dx \propto \pi N$ Sigma term
- existence of $\delta(x)$ -type sigularity ?

M.Burkardt and Y.Koike (2002)

What is the **physical origin** of this peculiar delta-function singularity ?

Origin of delta-function singularity in e(x)

existence of delta-function singularity in e(x) indicates

 $E(z_0) \xrightarrow{z_0 \to \infty}$ constant (does not damp)

long-range (infinite range) correlation

Within the CQSM, we could analytically confirm this behavior

M.W. and Y.Ohnishi, Phys. Rev. D67 (2003) 114011

We found the existence of this infinite-range correlation is inseparably connected with

nontrivial vacuum structure of QCD

spontaneous χ SB and nonvanishing vacuum quark condensate

Why does vacuum property come into nucleon (baryon) observable ?

due to extraordinary nature of the scalar quark density in the nucleon

$$S(\mathbf{r}) \equiv \langle N | \, \overline{\psi} \, \psi \left(\mathbf{r} \right) | N \rangle$$

nucleon scalar quark density in the CQSM

This in turn indicates that

$$E(z_0) = \langle N | \bar{\psi} \left(-\frac{z}{2} \right) \psi \left(\frac{z}{2} \right) | N \rangle |_{z_3 = -z_0, z_\perp = 0} \longrightarrow \text{nonzero}
 (as $z_0 \longrightarrow \infty$)
 (as $z_0 \longrightarrow \infty$)
 [$$

We thus conclude that

Nonvanishing quark condensate as a signal of the spontaneous χ SB of

the QCD vacuum is the physical origin of $\delta(x)$ -type singularity in e(x)

Sophisticated numerical method to treat $e^{(I=0)}(x)$ containing $\delta(x)$

Y. Ohnishi and M. W., Phys. Rev D69 (2004) 114002

We find that

1st moment sum rule for isoscalar e(x)

$$\int_{-1}^{1} e^{(I=0)}(x) dx = \bar{\sigma} : \text{ nucleon scalar charge}$$

numerically

$$\bar{\sigma} = \bar{\sigma}_{valence} + \bar{\sigma}_{sea}^{regl} + \bar{\sigma}_{sea}^{sing}$$

$$\simeq 1.7 + 0.2 + 9.9 \simeq 11.8$$

$$\operatorname{dominant}$$

with $m_q \simeq (4 \sim 7)$ MeV, this gives

$$\Sigma_{\pi N} \equiv m_q \bar{\sigma} \simeq (47 \sim 83) \text{ MeV}$$

reproduce fairly large πN sigma term

[Cf.] Nucleon scalar charge in the MIT bag model

$$\bar{\sigma} = \langle N \mid \int \bar{\psi}(\mathbf{r}) \psi(\mathbf{r}) d^3r \mid N \rangle = N_c \int \left\{ f(r)^2 - g(r)^2 \right\} r^2 dr$$

However, since

$$\int \left\{ f(r)^2 + g(r)^2 \right\} r^2 dr = 1$$

we find the **inequality**

$$\int \left\{ f(r)^2 - g(r)^2 \right\} r^2 dr < 1$$

$$\downarrow$$
compare
then $\bar{\sigma} < N_c = 3 \iff \bar{\sigma}_{CQSM} \simeq 11.8$

quark models with only 3 valence quark degrees freedom cannot reproduce large πN sigma term !

```
Short summary on e(x)
```

(1) delta-function singularity in chiral-odd twist-3 distribution e(x) is

a rare manifestation of **nontrivial vacuum structure** of QCD in baryon observable

(2) existence of this singularity will be observed as

violation of
$$\pi N$$
 sigma-term sum rule of $e^{(I=0)}(x)$

need very precise experimental information on this quantity in wider range of x.

especially in small x region

• A CLASS collaboration proposal, H. Avakian et al.

flavor SU(3) CQSM and strange sea distribution in the nucleon

model lagrangian

$$\mathcal{L} = \bar{\psi}(x) (i \not \partial - M U^{\gamma_5}(x) - \Delta m_s P_s) \psi(x)$$

with

$$U^{\gamma_5}(x) = e^{i \gamma_5 \pi(x)/f_{\pi}}, \quad \pi(x) = \pi_a(x) \lambda_a \quad (a = 1, \dots, 8)$$

 $\Delta m_s P_s = \begin{pmatrix} 0 & \\ & \Delta m_s \end{pmatrix} \quad : \quad \text{SU(3) breaking term}$

basic dynamical assumptions

(1) lowest energy classical solution is obtained by **embedding** of SU(2) hedgehog sol.

$$U_0^{\gamma_5}(x) = \begin{pmatrix} e^{i\gamma_5 \tau \cdot \hat{r} F(r)} & 0 \\ 0 & 1 \end{pmatrix} \in \mathbf{SU(3)}$$

(2) quantization of soliton rotational motion in SU(3) collective coordinate space.

(3) perturbative treatment of SU(3) breaking term.

$$\Delta \tilde{H} = \Delta m_s \cdot \gamma^0 A^{\dagger}(t) \left(\frac{1}{3} - \frac{1}{\sqrt{3}}\lambda_8\right) A(t), \quad \Delta m_s = 100 \pm 20 \,\mathrm{MeV}$$

Comparison with high energy data

• only 1 parameter of the SU(3) CQSM is fixed to be

 $\Delta m_s = 100 \pm 20 \, \text{MeV}$ no other free parameter

• use predictions of CQSM as initial-scale distributions given at

$$Q_{ini}^2 = 0.30 \,\mathrm{GeV}^2 \simeq (550 \,\mathrm{MeV})^2$$

$$u(x), \ d(x), \ s(x), \qquad \Delta u(x), \ \Delta d(x), \ \Delta s(x)$$

 $ar{u}(x),\ ar{d}(x),\ ar{s}(x),\ \Deltaar{u}(x),\ \Deltaar{d}(x),\ \Deltaar{d}(x),\ \Deltaar{s}(x)$

g(x) = 0, $\Delta g(x) = 0$

	SU(2) CQSM	SU(3) CQSM	Experiment
$g_A^{(3)}$	1.41	1.20	1.257 ± 0.016
$g_A^{(8)}$		0.59	0.579 ± 0.031
$g_A^{(0)}$	0.35	0.36	0.33 ± 0.04
Δu	0.88	0.82	0.842 ± 0.010
Δd	-0.53	-0.38	-0.427 ± 0.010
Δs	0	-0.08	$\textbf{-0.08} \pm \textbf{0.02}$
F		0.45	0.459 ± 0.008
D		0.76	0.798 ± 0.008
F/D		0.59	0.575 ± 0.016

problem of isospin asymmetry of sea quark distributions

SU(2) CQSM predicts
$$\begin{cases} \bar{u}(x) - \bar{d}(x) < 0 \\ \Delta \bar{u}(x) - \Delta \bar{d}(x) > 0 \end{cases} \implies SU(3) CQSM?$$

• $[\bar{d}(x) - \bar{u}(x)]^{SU(3)} \simeq [\bar{d}(x) - \bar{u}(x)]^{SU(2)}$ • $[\Delta \bar{d}(x) - \Delta \bar{u}(x)]^{SU(3)} < [\Delta \bar{d}(x) - \Delta \bar{u}(x)]^{SU(2)}$

several typical predictions of the SU(3) CQSM (continued)

(A) longitudinally polarized strange quark distributions

separate contributions of $\Delta s(x)$ & $\Delta \overline{s}(x)$

$$(\Lambda \sim uds, K^+ \sim u\overline{s})$$

Note the asymmetry $s \in \text{spin } 1/2 \text{ baryon}$ $\overline{s} \in \text{spin } 0 \text{ meson}$

asymmetry of unpolarized strange sea

$$\int_0^1 [s(x) - \overline{s}(x)] dx = 0 : \text{ net strange-quark number}$$

0.020 SU(3) CQSM 0.015 $\Delta m_e = 120 \text{ MeV}$ $\Delta m_s = 100 \text{ MeV}$ 0.010 CTEQ central fit $\Delta m_s = 80 \text{ MeV}$ 0.005 0.000 0.4 0.8 0.6 Х -0.005

 $x [s(x) - \bar{s}(x)]$

This is also consistent with the physical picture of meson-baryon fluctuation model

 $p \to \Lambda + K^+$

$$(\Lambda \sim uds, K^+ \sim u\overline{s})$$

Note the asymmetry $s \in baryon$ $\overline{s} \in meson$ \blacksquare s-quark has valence-like harder component ?

Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO

arXiv : 1107.2652 [hep-ph] , 13 July 2011.

The NNPDF Collaboration:

Richard D. Ball^{1,5}, Valerio Bertone², Francesco Cerutti³, Luigi Del Debbio¹, Stefano Forte⁴, Alberto Guffanti^{2,5}, José I. Latorre³, Juan Rojo⁴ and Maria Ubiali⁶.

