進步報告

Residual分布の作成・Coulomb Scattering効果の見積もり

B4 辻端日菜子 2023.02.22INTT_MT

これまで行ったこと

【GEANT4シミュレーション】

- ・セットアップのシンプル化
- ↑ 先週のINTT日本語MTまで
- ・ Residual分布の作成
- ・ Coulomb ScatteringをONにして分布の変化を見る

・ELPHビームテスト用GEANT4シミュレーションコードを使用 ・最上段以外の3段のラダーを使用 ・セットアップの上流1mから934MeVのe⁺(0.511MeV)を(0, 0, p_z)で入射

$$(p=\sqrt{E^2-m^2})$$

- 空気や物体による散乱などの影響を見積もるため、セットアップを変更してシミュレーション
- <u>シミュレーションしたセットアップ</u>
- ・ 3本のラダー (真空)
- ・ 3本のラダー(空気)
- 4本のラダー(空気)
- 4本のラダーとシンチレーター、暗箱(空気)

た

セットアップごとのResidual分布の比較1

上下ラダーから予想される真ん中ラダーのhit位置と実際のhit位置のchannel差 を横軸:channel差、縦軸:entryの分布として表したもの。 (上下ラダーのhit数1、真ん中ラダーのhit数は1以上)

(上下ラダーのhit数1、真ん中ラダーのhit数は1以上)

Coulomb Scattering効果の見積もり

Coulomb Scattering効果を見積もるために、Coulomb ScatteringをON(OFF) (/process/ activate(inactive) CoulombScat all) にして10万イベント生成し、結果を比較する。 セットアップはどちらも3本ラダー(真空)。 下図は横軸:channel、縦軸:エントリー(logスケール)としてプロットした図。 Coulomb Scattering OFF

Coulomb Scattering効果の見積もり

Coulomb Scattering効果を見積もるために、Coulomb ScatteringをON(OFF) (/process/ activate(inactive) CoulombScat all) にして10万イベント生成し、結果を比較する。 セットアップはどちらも3本ラダー(真空)。 下図はResidual分布。 Coulomb Scattering OFF

Coulomb Scattering効果の見積もり

Coulomb Scattering効果を見積もるために、Coulomb ScatteringをON(OFF) (/process/activate(inactive) CoulombScat all) にして10万イベント生成し、結果を比較する。 セットアップはどちらも3本ラダー(真空)。

下図は上下ラダーから予想される真ん中ラダーのhit位置と最も近い点と、それ以外の点でのResidual分布を比較した。 _(上下ラダーのhit数1、真ん中ラダーのhit数は1以上)

Coulomb Scattering OFF

Coulomb Scattering OFF

- ・ビームを打つ位置を真ん中(channel番号127、128間)にする → channel 分布、 Residual 分布が左右対称になるはず
- ・上下ラダーを結んだ飛跡の角度分布を出す
- 多重散乱をCoulomb Scatteringで計算する

Back Up

シミュレーション結果

左:横軸をchannel番号、縦軸をラダー番号としてhit位置をプロットした図

右:横軸をchip番号、縦軸をchannel番号としてhit分布図をラダーごとにプロットした図

ADC 閾値 と DACの 関係

通り。

・読み出しチップ(FPHXチップ)は1channelあたり3bitのADCと8bitのDAC をもつ。ADCの閾値はDACにより任意に設定可能。今回のDAC設定は以下の

ADC	DAC設定値
0	15
ן	30
2	60
3	90
4	120
5	150
6	180
7	210

Residual分布[mm]ver.

ある。そこで右図は横軸:hit位置の差[mm]、縦軸:エントリー(log scale)、1bin=1mmで表したもの。

Residual分布_1bin=1channel

セットアップごとのchip-channel分布の比較1

実際のhit位置を横軸:chip、縦軸:channelの分布として表したもの。

セットアップごとのchip-channel分布の比較1

実際のhit位置を横軸:chip、縦軸:channelの分布として表したもの。

4本ラダー (空気)

セットアップごとのchannel分布の比較1

実際のhit位置を横軸:channel、縦軸 表したもの。

実際のhit位置を横軸:channel、縦軸:エントリー(log scale)の分布として

セットアップごとのchannel分布の比較1

表したもの。

4本ラダー (空気)

File Edit View Options Tools

実際のhit位置を横軸:channel、縦軸:エントリー(log scale)の分布として

4本ラダー+空気+暗箱+シンチレーター

セットアップごとのchannel分布の比較1

実際のhit位置を横軸:channel、縦軸:エントリーの分布として表したもの。

<u>H</u>elp

セットアップごとのchannel分布の比較1

実際のhit位置を横軸:channel、縦軸:エントリーの分布として表したもの。

セットアップごとのラダー別のhit多重度分布1 ^{ラダー別の1イベント中のhit回数を横軸:hit回数、縦軸:エントリーの分布として表したもの。}

セットアップごとのラダー別のhit多重度分布1 ラダー別の1イベント中のhit回数を横軸:hit回数、縦軸:エントリーの分布と して表したもの。

4本ラダー (空気)

ELPHテストビーム実験

- ・ELPH(東北大学電子光理学研究センター)
- ・2021年12月
- ・セットアップ
- ・目的:検出効率の決定、ラダーの性能評価など
- $1 \text{GeV} \mathcal{O} e^+$
- chip10,11,23,24に照射

DAC値とエネルギーデポジットの関係

EDEventAction.ccより dac = 0.65 * (energy * 100 * 1.6 * gain / 3.6 + offset - 210.)/4. gain=100.0, offset=200.0 係数0.65 : バイアス電圧 100 V に対する 50 V 時の補正項

run.mac

6 7	/run/initialize
, 8	# Limit thread output to 1 thread
9	#/control/cout/ignoreThreadsExcept 0
10	
11	<pre># Set particle production thresholds (cuts)</pre>
12	/run/setCut 1 mm
13	/run/setCutForAGivenParticle e- 0.1 mm
14	/run/setCutForAGivenParticle e+ 0.2 mm
15	/run/setCutForAGivenParticle gamma 0.3 mm
16	
17	# following parameters give no difference but consume huge amount of memory and takes lo
18	# /run/setCutForAGivenParticle e– 40 um
19	<pre># /run/setCutForAGivenParticle e+ 40 um</pre>
20	# /run/setCutForAGivenParticle gamma 40 um
21	
22	#######################################
23	# Debugging commands #
24	#######################################
25	/run/verbose 0
26	<pre>/hits/verbose 0 # for HitsCollection and SensitiveDetector</pre>
27	<pre>/event/verbose 0 # for event and step</pre>
28	/tracking/verbose 0 # for tracking action
29	# /random/setSeeds 200
30	
31	######################################
32	# Run processing #
33	#######################################
34	/gun/particle e+ # it's necesasry anyway
35	/gun/energy 934 MeV # it works if the beam is not smeared
36	
37	<pre>#/process/inactivate msc e+</pre>
38	#/process/inactivate eIoni e+

39	<pre>#/process/inactivate eBrem e+</pre>
40	<pre>#/process/inactivate annihil e+</pre>
41	<pre>#/process/inactivate CoulombScat e+</pre>
42	
43	<pre>#/process/inactivate msc e-</pre>
44	#/process/inactivate eIoni e-
45	<pre>#/process/inactivate eBrem e-</pre>
46	<pre>#/process/inactivate annihil e-</pre>
47	<pre>#/process/inactivate CoulombScat e-</pre>
48	
49	<pre>#/process/activate CoulombScat e+</pre>
50	<pre>#/process/activate CoulombScat e-</pre>
51	
52	<pre># Dump particle processes</pre>
53	<pre># /particle/select e+</pre>
54	<pre># /particle/process/dump</pre>
55	
56	<pre># /particle/select e-</pre>
57	<pre># /particle/process/dump</pre>
58	
59	<pre>#/process/msc/EnergyLimit 1 GeV</pre>
60	
61	#######################################
62	# Start the run
63	<i>#####################################</i>
64	/run/printProgress 1000
65	/run/beamOn 100000

onger time

post_process_id

TypeName	ProcessType	SubType
Transportation	1	91
CoupleTrans	1	92
CoulombScat	2	1
Ionisation	2	2
Brems	2	3
PairProdCharged	2	4
Annih	2	5
AnnihToMuMu	2	6
AnnihToHad	2	7
NuclearStopp	2	8
ElectronSuper	2	9
Msc	2	10
Rayleigh	2	11
PhotoElectric	2	12
Compton	2	13
Conv	2	14
ConvToMuMu	2	15
GammaSuper	2	16
PositronSuper	2	17
Cerenkov	2	21
Scintillation	2	22
SynchRad	2	23
TransRad	2	24
SurfaceRefl	2	25
0pAbsorb	3	31
0pBoundary	3	32
0pRayleigh	3	33
OpWLS	3	34
OpMieHG	3	35
0pWLS2	3	36
DNAElastic	2	51
DNAExcit	2	52

DNAIonisation
DNAVibExcit
DNAAttachment
DNAChargeDec
DNAChargeInc
DNAElecSolv
DNAMolecDecay
ITTransport
DNABrownTrans
DNADoubleIoni
DNADoubleCap
DNAIoniTransfer
HadElastic
HadInelastic
HadCapture
MuAtomCapture
HadFission
HadAtRest
HadCEX
Decay
DecayWSpin
DecayPiSpin
DecayRadio
DecayUnKnown
DecayMuAtom
DecayExt
StepLimiter
UsrSepcCuts
NeutronKiller
ParallelWorld

53
54
55
56
57
58
59
60
61
62
63
64
111
121
131
132
141
151
161
201
202
203
210
211
221
231
401
100
402
402

SubTypeの番号が
event_particleの
post_process_idに対応
している?

Coulomb Scatteringは少しだけ起こってはいるが、統計的に分布に影響を与えるほど起こっているわけではない?
GEANT4の多重散乱を全てCoulomb Scatteringで計算する(現実と同様に。シミュレーション的には計算量が増えすぎるため、近似的に多重散乱を使用)と違いが見えるかも、らしい