中性子過剰核のベータ崩壊と遅発中性子

Futoshi Minato

Japan Atomic Eenergy Agency Nuclear Data Center

Background
 Fission Fragment Yield
 β-delayed neutron & fission
 Summary

理論と実験で拓く中性子過剰核の核分裂@理研, 2023 2/16

Nucleus can be excited by β^{\pm} decays

Beta-Delayed Fission

Role of Beta-Delayed Fission in r-process

- I. Competing β -delayed Neutron Emission
- 2. Termination of heavy element synthesis after freeze-out

Substantial Effect of β -Delayed Fission on r-process

Source of neutron (prompt fission neutron)
 Reaccumulating abundance of middle heavy nuclei

Need fission fragment distribution (FFD)

FM, T. Marketin, N. Paar, PRC **104**, 044321 (2021)

4

Estimating FFD for n-rich nuclei Katakura Model JAERI-Research 2003-004

 $\psi(A, E^*) = N_s \psi_s(A, E^*) + N_a \psi_a(A, E^*)$

 $= N_s \psi_s(A, E^*) + N_a \left[\psi_{h1}(A, E^*) + \psi_{l1}(A, E^*) + F \left\{ \psi_{h2}(A, E^*) + \psi_{l2}(A, E^*) \right\} \right]$

$$\psi_s(A, E^*) = \frac{1}{\sqrt{2\pi}\sigma_s} \exp\left\{-(A - A_s)^2/2\sigma_s^2\right\},$$

$$\psi_{h1}(A, E^*) = \frac{1}{\sqrt{2\pi}\sigma_{h1}} \exp\left\{-(A - A_{h1})^2/2\sigma_{h1}^2\right\},$$

$$\psi_{h2}(A, E^*) = \frac{1}{\sqrt{2\pi}\sigma_{h2}} \exp\left\{-(A - A_{h2})^2/2\sigma_{h2}^2\right\},$$

$$N_s = 200/(1+2R),$$

$$N_a = 200R / \{(1+F)(1+2R)\},\$$

$$R = [112.0 + 41.24 \sin(3.675S)] \cdot \frac{1.0}{BN^{0.331} + 0.2067} \cdot \frac{1.0}{E^{0.993} + 0.0951},$$

$$F = 10.4 - 1.44S,$$

$$\sigma_s = 12.6,$$

$$\sigma_{h1} = (-25.27 + 0.0345A_f + 0.216Z_f)(0.438 + E + 0.333BN^{0.333})^{0.0864},$$

$$\sigma_{h2} = (-30.73 + 0.0394A_f + 0.285Z_f)(0.438 + E + 0.333BN^{0.333})^{0.0864},$$

$$A_{h1} = 0.5393(A_f - \bar{\nu}) + 0.01542A_f(40.2 - Z_f^2/A_f)^{1/2},$$

$$A_{h2} = 0.5612(A_f - \bar{\nu}) + 0.01910A_f(40.2 - Z_f^2/A_f)^{1/2}.$$

$$(3.2)$$

Estimating FFD for n-rich nuclei

Katakura model is reasonable for nuclei near β -stability kine

Results of Recent Phenomenological Model [CCONE]

Gamma-ray Decay Heat

Beta-ray Decay Heat

Neutron multiplicity

Delayed Neutron Yield

Light fragment yield

Estimating FFD for n-rich nuclei

	Target Nucleus	Energy Range
Katakura-Moriyama Model (Phenomenological)	Experimentally Reachable Region	0-200 MeV
Langevin Model (Dynamical model on PES of two-center shell model)	Wide Range of Nuclei	> 10 MeV

Optimizing parameters in KM model using Langevin Model at high E*

→Future Work

PURPOSE

Fission Yield Distribution of β –delayed fission

FFD of β-Delayed Fission

Theoretical Framework

$$Y(Z, A, M) = \sum_{x} Y_{x} (Z, A, M)$$

= $\int_{0}^{Q_{\beta}} \left[r_{0nf,i}(E^{*})Y_{0nf}(Z, A, M, E^{*}) + \int_{0}^{E^{*} - \epsilon_{n}(E^{*})} r_{1nf,i}(E_{1}^{*})Y_{1nf}(Z, A, M, E_{1}^{*})dE_{1}^{*} + \cdots \right] dE^{*}$

Only 1st chance fission is considered

RESULT

FRDM fission barrier (Bf=1.38 MeV)

FFD of ²⁹⁰Md at different E* (Katakura model)

²⁹⁰Fm(n_{th} ,f) vs ²⁹⁰Fm (β ,f)

Summary

✓ Calculate delayed-neutron emission and fission probabilities with beta-strength function of relativistic Skyrme EDF+QRPA

✓ Estimate FFD of beta-delayed fission of ²⁹⁰Fm, where FFD is estimated by K-M model, and Compare with thermal-induced fission

I am sure that further study will make us excited!

Next stage: Phenomenological approach disciplined by Langevin model