理化学研究所,和光 2023/12/16

岡田和記, 和田隆宏

関西大学 システム理工

Nicolae Carjan

Joint Institute for Nuclear Research, Russia

Centre d'Etudes Nucleaires de Bordeaux-Gradignan, France

Horia Hulubei - National Institute for Nuclear Physics and Engineering, Romania

<u>5次元Cassiniパラメータを用いた核分裂のLangevin計算</u>

- ・超重核領域における変形核形状の描写
- ・多次元Langevin方程式への適用

<u>Cassiniパラメータの特徴</u>

Fig. 8. The same as in fig. 7 for 234U at the top, 246Pu in the middle and 254Cf at the bottom.

Cassini shape parameterization

FIG. 3. The calculated fragment mass distributions for isotopes of Hs, Ds, and Cn for which spontaneous fission has been detected. Three values of the excitation energy E^* have been considered. $T_{coll} = 2$ MeV, $E_d = 40$ MeV.

Static approach (not Langevin)

- pre-scission shape
- potential energy of deformation

FIG. 2. The just-before-scission shape of 284 Cn for $A_L = 133$ (solid) and the fit of left and right part of nucleus by spheroids (dash).

N. Carjan, F. A. Ivanyuk, Yu. Ts. Oganessian, Phys. Rev. C **999**, 064606 (2019).

5次元{*a*, *a*₁, *a*₃, *a*₄, *a*₆}Langevin方程式 系統的な核分裂計算

Cassini Shape Parameterization

Cassini ovals (R = const.)

$$R(x) = 1 + \sum_{n=1}^{\infty} \alpha_n P_n(x)$$

 $\alpha = \frac{z_R^2 + z_L^2 - 2\rho_{\text{neck}}^2}{z_R^2 + z_L^2 + 2\rho_{\text{neck}}^2}$

α : elongation

Pashkevich, Nucl. Phys. A **169** (1971) 275.

Legendre expansion of R for additional parameters

 $n = \begin{cases} \text{odd: asymmetric deformation} & \alpha_1 & \alpha_3 \\ \text{even: symmetric deformation} & \aleph 2 & \alpha_4 & \alpha_6 \end{cases}$

Cassini Shape Parameterization

necessary parameters

 $\frac{dp_i}{dt}$

慣性テンソル Werner-Wheeler method $m_{ij}(q)$ K. T. R. Davies et al., Phys. Rev. C 13, 2385 (1976) $\gamma_{ij}(\boldsymbol{q})$ 摩擦テンソル Completed wall-and-window formula J. Randrup and W. J. Swiatecki, Nucl. Phys. A 429, 105 (1984)

 $\{\alpha, \alpha_n\}$

$$3D\{\alpha, \alpha_1, \alpha_4\} \cdot 4D\{\alpha, \alpha_1, \alpha_3, \alpha_4\} \\ \{\alpha, \alpha_1, \alpha_4, \alpha_6\} \cdot 5D\{\alpha, \alpha_1, \alpha_3, \alpha_4, \alpha_6\}$$
 での比較

<u>・質量分布が変化</u> 非対称分裂(²⁵⁶Fm)

対称分裂(258Fm~)

- ・対称分裂を描写できる自由度
- ・Cassiniパラメ^企タの追加

D. C. Hoffman et al., Phys. Rev. C 21, 972–981, (1980).

 $\alpha, \alpha_1, \alpha_4, \alpha_6 + \alpha_3$

・非対称分裂の考慮

 \rightarrow

Result: TKE-FMN

 256 Fm { α , α_1 , α_3 , α_4 , α_6 }

²⁵⁸Fm { α , α_1 , α_3 , α_4 , α_6 }

Result: Fm Fragment Mass Distributions

$$\begin{array}{c} O \ 5D \ (\alpha, \alpha_1, \ \alpha_3, \alpha_4, \alpha_6) \\ - \exp \end{array}$$

D. C. Hoffman et al., Phys. Rev. C 21, 972–981, (1980).

・Cassiniパラメータを用いた核分裂Langevin計算の5次元化

非対称分裂に特化 $\{\alpha, \alpha_1, \alpha_3, \alpha_4\}$ 対称分裂に特化 $\{\alpha, \alpha_1, \alpha_4, \alpha_6\}$

 $\{\alpha, \alpha_1, \alpha_3, \alpha_4, \alpha_6\}$

系の分裂様相に関わらず 採用すべきパラメータセット

|--|

今後: アクチノイド領域での検討

Langevin計算の改良 (particle emission, linear response) 5次元ポテンシャル上fission pathの解析 (次スライド)

Future Work (1): Action Integral

initial point:
$$(\alpha, \alpha_1) = (\alpha^0, \alpha_1^0)$$

 $(x, y) = (0, 0)$
final point: $(\alpha, \alpha_1) = (\alpha^f, \alpha_1^f)$
 $(x, y) = (x^f, 0)$
· Formulation of Ritz method
 $y(x) = \sum_k a_k \sin \frac{k\pi x}{x^f}$
A. Baran, Phys. Lett. 76B (1978) 8

Future Work (1): Action Integral

Multi-dimensional Ritz method

$$\overline{\alpha_{i}}(\bar{\alpha}) = \sum_{k=1}^{N_{i}} b_{k}^{i} \sin \frac{k\pi\bar{\alpha}}{\bar{\alpha}^{f}}$$
Action integra
$$S(L) = \int_{\text{initial}}^{\text{final}} \sqrt{M(s)(V(s) - E)} ds$$

$$= \int_{0}^{x^{f}} \sqrt{M(x, y(x))(V(x, y(x) - E)} dx$$
Werner-Wheeler mass or deformation energy
$$Cranking \text{ mass}$$
256Fm, 258Fm 自発核分裂へのアプローチ
5次元ポテンシャルの解析

red: $N_i=10$ blue: $N_i = 20$ green: $N_i=30$

展望

5次元Cassiniパラメータを用いた核分裂研究 $\{\alpha, \alpha_1, \alpha_3, \alpha_4, \alpha_6\}$

fission pathの解明

- Langevin計算から得られる軌跡を解析
- ・Minimum action integral計算

> 中性子数変化に対する劇的な分裂様相の変化にアプローチ

Thank you for your kind attention!