Status report

Gaku Mitsuka (KEK, Accelerator Laboratory)

> RHICf KAKEN meeting 21 Nov. 2022

Calculation & simulation sets for RHICf-II

	Hadronic	UPC	√s (GeV)
p↑-p	Ongoing	Negligible	510
p [↑] -Al	Similar with p-p?		200
p [↑] -Au	Similar with p-p?	2π MAID?	200
etc?			

$A_N(x_F, p_T)$ in $p^{\uparrow}p \rightarrow \pi^0 X$ at $\sqrt{s} = 510$ GeV

RHICf at $\sqrt{s} = 510 \text{ GeV}$ z0.25 V 0.2 Å $p^{\uparrow}+p \rightarrow \pi^{0}+X$ $p^{\uparrow}+p \rightarrow \pi^0+X$ at $\sqrt{s} = 510 \text{ GeV}$ (a) RHICf π⁰ 6<η /s=510 GeV 0.00<p_<0.07 GeV/c **6** < η 0.2⊢ RHICf 0.07<p_<0.19 GeV/c 0.15 $0.25 < x_{r} < 0.34$ RHICf 0.19<p_<0.30 GeV/c $0.34 < x_{F} < 0.44$ 0.15 RHICf 0.50<p_<0.69 GeV/c $0.44 < x_{c} < 0.58$ PHENIX π⁰ 3.1<η<3.8 √s=62.4 GeV 0.1 $0.58 < x_{F} < 1.00$ E704 π⁰ √s=19.4 GeV 0.1 STAR π⁰ <η>=3.3 √s=200 GeV 0.05 0.05 $A_N/p_T \sim 0.25 \text{ GeV/c}$ 0 -0.05[∟]0 0.2 0.8 0.4 0.6 0.2 0.3 0 0.1 0.4 0.5 0.6 0.7 0.8 p_(GeV/c) X_F z0.25 ▼ $p^{\uparrow}+p \rightarrow \pi^{0}+X$ at $\sqrt{s} = 510$ GeV Copposite sign compared with neutron A_N • A_N/x_F seems independent of \sqrt{s} and η . 0.2 (can QCD processes make large A_N at ୩୦୨୦i≤ଅbootଫାରି#େbkcneutron A_N. $p_T > 1 \text{ GeV/c?})$ $0.07 < p_{\tau}^{\cdot} < 0.19 \text{ GeV/c}$ 0.15 $0.19 < p_{\perp} < 0.30 \text{ GeV/c}$ 0.30 < p₋ < 0.50 GeV/c 0.1 0.50 < p_ < 0.69 GeV/c 0.69 < p_ < 1.00 GeV/c 0.05 Gaku Mitsuka RHICf KAKEN meeting 21 Nov. 2022

Triple-regge diagram in $p^{\uparrow}p \rightarrow \pi X$

Triple-regge/pomeron diagram is valid in the limit of $M^2 \rightarrow \infty$ and $s \rightarrow \infty$ that mostly suits to the RHICf kinematics.

$$A(12 \to 3X) \sim \sum_{s \to \infty} \sum_{i} g_{13}^{i}(t) g_{2X}^{i}(t) \eta_{i}(t) \left(\frac{s}{M^{2}}\right)^{\alpha_{i}(t)}$$

$$g_{13}: p \to \pi^{0} \text{ vertex function}$$

$$g_{2X}: p+I(j) \to X \text{ cross section}$$

$$\eta: \text{ trajectory's phase}$$

- α(t): regge/pomeron trajectory
- M²/s ~ 1 x_F

Regge trajectories

[Storrow, Phys. Rep. 103, 317]

Very old but still usable as recent papers refer

Ed³ σ /dp³ in p[†]p $\rightarrow \pi^{+/-}X$

 $t = -1.15 (GeV/c)^{2}$

Gaku Mitsuka RHICf KAKEN meeting² 21 Nov. 2022

6 t == 1+255(GB2V96)

Ed³ σ /dp³ in p[†]p $\rightarrow \pi^{0}X$

Absorptive correction and interference

[Kopeliovich, Phys. Rev. D 78, 014031]

$$A_N = 2 \frac{\mathrm{Im} \, M_{\mathrm{flip}}^* M_{\mathrm{nonflip}}}{|M_{\mathrm{flip}}^*|^2 + |M_{\mathrm{nonflip}}^*|^2} \propto 2 \mathrm{Im} \, \eta^* \eta$$

- Nonzero asymmetry is generated through phase interferences (Im[η_i(t)η_j(t)*] ≠ 0); at least either A or B is needed.
 - A. Interference in particle exchange
 - B. Interference in absorptive correction
- E.g. for forward neutrons [Kopeliovich, PRD 84]
 - A. π -a₁ exchange interferences \rightarrow leading
 - B. Absorptive correction \rightarrow sub-leading

What I did for 2+ years...

My calculation was stuck in how to make N(1/2) and $\Delta(3/2)$ coupled. I thought this interference was necessary to generate nonzero A_N. \rightarrow prohibited Each phase differences of N and Δ exchanges gives sizable A_N.

$$d\Delta\sigma_{\perp}=d\Delta\sigma_{\perp}^{N}+d\Delta\sigma_{\perp}^{U}$$

$$d\Delta\sigma_{\perp}^{N} = \frac{1}{s} \sum_{\lambda} \beta_{+\lambda}^{N} \beta_{-\lambda}^{N^{*}} 2 \mathrm{Im} \mathcal{P}_{N} \mathcal{P}_{N^{*}}^{*} \qquad d\Delta\sigma_{\perp}^{U} = \frac{1}{s} \sum_{\lambda} (\beta_{+\lambda}^{\Delta} \beta_{-\lambda}^{\Delta^{*}}) 2 \mathrm{Im} \mathcal{P}_{\Delta} \mathcal{P}_{\Delta^{*}}^{*}$$
$$\times \sum_{k} G_{k}^{NN^{*}}(t) \gamma_{k}^{pp}(0) \left(\frac{M_{X}^{2}}{s_{0}}\right)^{\alpha_{k}(0)} \qquad \times \sum_{k} G_{k}^{\Delta\Delta^{*}}(t) \gamma_{k}^{pp}(0) \left(\frac{M_{X}^{2}}{s_{0}}\right)^{\alpha_{k}(0)}$$

H-J Kim et. al., PRD 106, 054001

momentum p_T at $p_T < 1$ GeV/c. Employing baryonic triple Regge exchanges, we describe the complete RHICf data for the first time and show that the neutral pion production at low p_T can be interpreted as a diffractive one.

$$g_{\mathbb{P}}^{ij} \equiv G_{\mathbb{P}}^{ij}(0)/G_{\mathbb{P}}^{NN}(0), \qquad b_{\mathbb{P}}^{ij} \equiv B_{\mathbb{P}}^{ij} - B_{\mathbb{P}}^{NN} \quad (17)$$

and fit them to the RHICf data. In Table I, we list the

Are these numbers consistent with those from the π^0 cross sections? \rightarrow compare RHICf or low- \sqrt{s} data

0

0

 $\Delta\Delta^*$

 N^*N^*

 $\Delta\Delta \Delta^*\Delta^*$

-0.018

0.10

0.022

0.079

$A_N(x_F, p_T)$ in $p^{\uparrow}p \rightarrow \pi X$ at $\sqrt{s} = 19.4$ GeV

E704 at $\sqrt{s} = 19.4 \text{ GeV}$

- Assuming we are in the phase space where the triple-regge diagram works reasonably,
 - π^+ , π^0 : nucleon and Δ exchanges
 - π -: Δ exchanges
- Interesting to see how H-J Kim's model behaves for forward neutral and charged πs, for example in the phase space of E704
- Can estimate the BG contribution of the soft process to QCD-based models?

Inclusively measured A_N is the weighted sum of A_N s for each process: 1-diff, 2-diff, non-diff, elastic, BG etc.

$$\langle A_N \rangle = \frac{\sum_i A_{Ni} \sigma_i}{\sum_i \sigma_i}$$

Next fiscal year's plan

- An urgent need is reinforcement of the computing resources in KEK.
- Search for other processes possibly contributing to π^0 cross section and asymmetry
- Implementation of the 2π MAID model in the UPC simulation codes (no need to hurry up?)

	Hadronic	UPC	√s (GeV)
p [↑] -p	Ongoing	Negligible	510
p [↑] -Al	Similar with p-p?		200
p [↑] -Au	Similar with p-p?	2π MAID?	200
etc?			