## Status report

Gaku Mitsuka<br>(KEK, Accelerator Laboratory)

RHICf KAKEN meeting
21 Nov. 2022

## Calculation \& simulation sets for RHICf-II

## Hadronic UPC $\quad$ Vs $(\mathrm{GeV})$

$p^{\uparrow}-p$
$p^{\uparrow-A l}$
$p^{\uparrow-A u}$
etc?

Ongoing Negligible 510
Similar with p-p?
Similar with
$p-p$ ?
$2 \pi$ MAID?
200

## $A_{N}\left(X_{F}, p_{T}\right)$ in $p^{\top} p \rightarrow \pi^{0} X$ at $\sqrt{ } s=510 \mathrm{GeV}$



- Opposite sign compared with neutron $A_{N}$
- $\left|A_{N}\right| / p_{T}$ is about half of neutron $A_{N}$.

- $A_{N} / X_{F}$ seems independent of $\sqrt{ } s$ and $\eta$. (can QCD processes make large $A_{N}$ at $p_{T}>1 \mathrm{GeV} / \mathrm{c}$ ?)


## Triple-regge diagram in $p^{\uparrow} p \rightarrow \pi X$


[Barone and Predazzi]
Triple-regge/pomeron diagram is valid in the limit of $\mathrm{M}^{2} \rightarrow \infty$ and $s \rightarrow \infty$ that mostly suits to the RHICf kinematics.

$$
\begin{aligned}
& A(12 \rightarrow 3 X) \underset{s \rightarrow \infty}{\sim} \sum_{i} g_{13}^{i}(t) g_{2 X}^{i}(t) \eta_{i}(t)\left(\frac{s}{M^{2}}\right)^{\alpha_{i}(t)} \\
& \text { - } g_{13}: p \rightarrow \pi^{0} \text { vertex function } \\
& \text { - } g_{2 x}: p+l(j) \rightarrow X \text { cross section } \\
& \text { - } \eta \text { : trajectory's phase } \\
& \text { - } a(t) \text { : regge/pomeron trajectory } \\
& \text { - } \mathrm{M}^{2} / \mathrm{s} \sim 1-\mathrm{X}_{\mathrm{F}}
\end{aligned}
$$

## Regge trajectories

[Storrow, Phys. Rep. 103, 317]


Very old but still usable as recent papers refer

## $E d^{3} \sigma / d^{3}$ in $\mathbf{p}^{\dagger} \mathbf{p} \rightarrow \boldsymbol{\pi}^{+/-X}$



## $E d^{3} \sigma / d^{3}$ in $p^{\dagger} p \rightarrow \pi^{0} X$

## E350 at $\sqrt{ } \mathrm{s}=13 \mathrm{GeV}$







- My calculations follow the simple triple-regge diagrams driven by proton and $\Delta(1232)$ exchanges.
- Overall not so bad


## Absorptive correction and interference

[Kopeliovich, Phys. Rev. D 78, 014031]

$$
A_{N}=2 \frac{\operatorname{Im} M_{\text {flip }}^{*} M_{\text {nonflip }}}{\left|M_{\text {flip }}^{*}\right|^{2}+\left|M_{\text {nonflip }}^{*}\right|^{2}} \propto 2 \operatorname{Im} \eta^{*} \eta
$$



- Nonzero asymmetry is generated through phase interferences $\left(\operatorname{lm}\left[\eta_{i}(t) \eta_{j}(t)^{*}\right] \neq 0\right)$; at least either A or B is needed.
A. Interference in particle exchange
B. Interference in absorptive correction
- E.g. for forward neutrons [Kopeliovich, PRD 84]
A. $\pi-a_{1}$ exchange interferences $\rightarrow$ leading
B. Absorptive correction $\rightarrow$ sub-leading



## What I did for 2+ years...

My calc. (failed)


My calculation was stuck in how to make $N(1 / 2)$ and $\Delta(3 / 2)$ coupled. I thought this interference was necessary to generate nonzero $A_{N}$.
$\rightarrow$ prohibited

H-J Kim et. al., PRD 106, 054001


Each phase differences of N and $\Delta$ exchanges gives sizable $\mathrm{A}_{\mathrm{N}}$.

$$
d \Delta \sigma_{\perp}=d \Delta \sigma_{\perp}^{N}+d \Delta \sigma_{\perp}^{U}
$$

$$
\begin{aligned}
d \Delta \sigma_{\perp}^{N}= & \frac{1}{s} \sum_{\lambda} \beta_{+\lambda}^{N} \beta_{-\lambda}^{N^{*}} 2 \operatorname{Im} \mathcal{P}_{N} \mathcal{P}_{N^{*}}^{*} \quad d \Delta \sigma_{\perp}^{U}= \\
& \frac{1}{s} \sum_{\lambda}\left(\beta_{+\lambda}^{\Delta} \beta_{-\lambda}^{\Delta^{*}}\right) 2 \operatorname{Im} \mathcal{P}_{\Delta} \mathcal{P}_{\Delta^{*}}^{*} \\
& \times \sum_{k} G_{k}^{N N^{*}}(t) \gamma_{k}^{p p}(0)\left(\frac{M_{X}^{2}}{s_{0}}\right)^{\alpha_{k}(0)}
\end{aligned}
$$

## H-J Kim et. al., PRD 106, 054001

momentum $p_{T}$ at $p_{T}<1 \mathrm{GeV} / c$. Employing baryonic triple Regge exchanges, we describe the complete RHICf data for the first time and show that the neutral pion production at low $p_{T}$ can be interpreted as a diffractive one.

determined. In the present work, we parametrize the form of the triple Regge couplings so that we can describe the RHICf data: $G_{\mathrm{P}}^{i i}(t)=G_{\mathrm{P}}^{i i}(0) e^{-B_{\mathrm{p}}^{i i}|t|}, G_{\mathrm{P}}^{i j}(t)=$ $G_{\mathbb{P}}^{i j}(0) \sqrt{|t|} e^{-B_{\mathrm{P}}^{i j}|t|} / m_{\pi}$. We define the following parameters:

$$
\begin{equation*}
g_{\mathbb{P}}^{i j} \equiv G_{\mathbb{P}}^{i j}(0) / G_{\mathbb{P}}^{N N}(0), \quad b_{\mathbb{P}}^{i j} \equiv B_{\mathbb{P}}^{i j}-B_{\mathbb{P}}^{N N} \tag{17}
\end{equation*}
$$

and fit them to the RHICf data. In Table I, we list the

$$
\begin{array}{lcc}
\text { TABLE I. Numerical values of the parameters } g_{\mathrm{P}}^{i j} \text { and } b_{\mathrm{P}}^{i j} \text {. } \\
\text { The first column lists the values of } g_{\mathbb{P}}^{i j} \text { with } i \text { and } j \text { given whereas } \\
\text { the second column shows the values of } b_{\mathrm{P}}^{i j} \text {. } \\
\hline \hline & g_{\mathrm{P}}^{i j} & \\
\hline N N^{*} & 0.028 & b_{\mathbb{P}}^{i j}\left[\mathrm{GeV}^{-2}\right] \\
\Delta \Delta^{*} & -0.018 & 0.2 \\
N^{*} N^{*} & 0.10 & 0 \\
\Delta \Delta & 0.022 & 0 \\
\Delta^{*} \Delta^{*} & 0.079 & 0 \\
\hline \hline
\end{array}
$$

Are these numbers consistent with those from the $\pi^{0}$ cross sections? $\rightarrow$ compare RHICf or low- $\sqrt{ }$ s data

## $A_{N}\left(x_{F}, p_{T}\right)$ in $p^{\dagger} p \rightarrow \pi X$ at $\sqrt{ } s=19.4 \mathrm{GeV}$



## E704 at $\sqrt{ } \mathrm{s}=19.4 \mathrm{GeV}$

- Assuming we are in the phase space where the triple-regge diagram works reasonably,
- $\pi^{+}, \pi^{0}$ : nucleon and $\Delta$ exchanges
- $\pi: \Delta$ exchanges
- Interesting to see how H-J Kim's model behaves for forward neutral and charged $\pi s$, for example in the phase space of E704
- Can estimate the BG contribution of the soft process to QCD-based models?

Inclusively measured $A_{N}$ is the weighted sum of $A_{N} S$ for each process: 1-diff, 2-diff, non-diff, elastic, BG etc.

$$
\left\langle A_{N}\right\rangle=\frac{\sum_{i} A_{N i} \sigma_{i}}{\sum_{i} \sigma_{i}}
$$

## Next fiscal year's plan

- An urgent need is reinforcement of the computing resources in KEK.
- Search for other processes possibly contributing to $\pi^{0}$ cross section and asymmetry
- Implementation of the $2 \pi$ MAID model in the UPC simulation codes (no need to hurry up?)


## Hadronic <br> UPC <br> $\sqrt{s}(\mathrm{GeV})$

## Ongoing Negligible

510
Similar with
p-p?
Similar with
$2 \pi$ MAID?
200
$p^{\uparrow}$-Al
$p^{\uparrow}-A u$
p-p?
$2 \pi$ MAID?
200
etc?

