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Calculation & simulation sets for RHICf-II
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AN(xF, pT) in p↑p→π0X at √s = 510 GeV
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RHICf at √s = 510 GeV

• Opposite sign compared with neutron AN


• |AN|/pT is about half of neutron AN.

• AN/xF seems independent of √s and η. 
(can QCD processes make large AN at 
pT > 1 GeV/c?)
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Triple-regge/pomeron diagram is valid in the limit of M2→∞ and s→∞ that mostly suits to 
the RHICf kinematics.

Sum over all trajectories

Triple-regge diagram in p↑p→πX

4

• g13: p→π0 vertex function


• g2X: p+I(j)→X cross section


• η: trajectory’s phase


• α(t): regge/pomeron trajectory


• M2/s ~ 1 - xF

[Barone and Predazzi]
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P
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Regge trajectories
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[Storrow, Phys. Rep. 103, 317]

↵N↵(t) = �0.34 + 0.99t
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38(1 J.K. Storrow. Baryon exchange processes
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Fig. 34. (a) Fits to the missing mass squared distributions in pp—~(if~, ir, K~)Xat s = 20230eV2 and u = —0.55 (0eV/c)2. The solid lines are the
fits described in the text (eq. (4.37)). (b) Effective trajectories obtained from fits to the inclusivemeson production data in pp—~(it, ir. K~)Xat ISR
energies. Both from ref. [307].

Thus the anomalously low effective trajectories found at PS energies seem to indicate that in these
reactions triple Regge behaviour does not set in until very high energies. It has been suggested by Chan
Hong-Mo [297,310, 311] that this is a general feature of cases where a heavy particle fragments into a
light one. The argument is essentially kinematic and depends on the fact that in these cases the edge of
the physical region Umax {= (ma — md)2} has a significant positive value [=0.6 (0eV/c)2 for p—s. ur] and for
moderate energies different multiperipheral mechanisms could be important [297]. There is some
support for this in that in two similar non-exotic cases, ‘yp—s. urX at PL = 9.3 GeV/c [312] and
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Thus the anomalously low effective trajectories found at PS energies seem to indicate that in these
reactions triple Regge behaviour does not set in until very high energies. It has been suggested by Chan
Hong-Mo [297,310, 311] that this is a general feature of cases where a heavy particle fragments into a
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Very old but still usable as recent papers refer
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Ed3σ/dp3 in p↑p→π+/-X
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ISR at √s = 45 GeV

π+π-
π-

π+

π0
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Ed3σ/dp3 in p↑p→π0X
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• My calculations follow the simple 
triple-regge diagrams driven by 
proton and Δ(1232) exchanges.


• Overall not so bad

E350 at √s = 13 GeV
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Absorptive correction and interference
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[Kopeliovich, Phys. Rev. D 78, 014031]

compared to the pion [1], they become equally important
and start taking over at z * 0:9.

Another important correction, which is the main focus of
this paper, is the effect of absorption, or initial/final state
interactions. The active projectile partons participating in
the reaction, as well as the spectator ones, can interact with
the proton target or with the recoil neutron, and initiate
particle production, which usually leads to a substantial
reduction of the neutron momentum. The probability that
this does not happen, called sometimes survival probability
of a large rapidity gap, leads to a suppression of leading
neutrons produced at large z. There are controversies re-
garding the magnitude of this suppression. Some calcula-
tions predict quite a mild effect, of about 10% [2–5], while
others [6–8] expect a strong reduction by about a factor of
2. See [8] for a discussion of the current controversies in
data and theory, for leading neutron production.

Usually absorptive corrections are calculated in a proba-
bilistic way, convolving the gap survival probability with
the cross section. We found, however, that the spin ampli-
tudes of neutron production acquire quite different sup-
pression factors, and one should work with amplitudes,
rather than with probabilities.

In Sec. II we introduce the spin amplitudes for inclusive
production of neutrons and calculate the cross section in
Born approximation of single pion exchange. Contrary to
the usual case in binary reactions, the spin nonflip term is
large and rises towards small z. Comparison with ISR
measurements [9] shows that the calculation overshoots
somewhat the data, albeit only by about 10%. Calculations
also result in a substantial rise of the cross section with
energy.

In Sec. III the absorptive corrections are introduced.
Assuming that the corrections factorize in impact parame-
ter space, the spin amplitudes are transformed to this
representation, and the general expression for the gap
survival amplitude is derived. We found that the main
Fock component of the incoming proton, which is respon-
sible for the absorptive corrections, is a 5-quark color
octet-octet state. Therefore it is not a surprise that the
resulting neutron damping at which we arrive is quite
strong. In order to figure out what was missed in previous
calculations which led to a weak absorption damping, in
Sec. III C we reformulated the current mechanism in terms
of Reggeon calculus.

We calculate the gap survival amplitude within two quite
different models. In Sec. IV we employ the well developed
phenomenology of light-cone color dipoles fitted to photo-
production and deep-inelastic scattering (DIS) data. We
use the saturated model for the dipole cross section, gen-
eralized recently to a partial dipole-proton amplitude.

Another model for the survival amplitude is presented in
Sec. V. Expanding the 5-quark Fock state over the full set
of hadronic states, we assumed that the !p pair containing
the 5 valence quark is the dominant term. The gap survival

amplitudes of pion and proton was extracted in a model-
independent way directly from data for elastic !p and pp
scattering. We found that the results of the two models,
based on dipole and hadronic representations, resulted in
rather similar gap survival amplitudes.
In Sec. VI we calculate the spin nonflip and flip contri-

butions to the cross section, and found that the inclusive
cross section of neutron production is about twice as small
as the original result of the Born approximation. We also
conclude that absorptive corrections practically terminate
the strong energy dependence that results from the Born
approximation. The ISR data support this observation.
Although the calculated shape of z-distribution is im-

proved by absorption and corresponds to the shape of the
ISR data at qT ¼ 0, the overall normalization is quite lower
than in the data. In Sec. VII B we compare the ISR data
with other measurements, in particular, with the recent
results of the ZEUS collaboration for inclusive neutron
production in the photo-absorption reaction "p ! Xn.
The two sets of data turn out to be not really consistent,
what makes questionable the normalization of the ISR
data.
We summarize the main results and observations in

Sec. VIII.

II. PION POLE

The Born approximation pion exchange contribution to
the amplitude of neutron production pp ! nX, depicted in
Fig. 2(a), in the leading order in small parameter mN=

ffiffiffi
s

p
has the form

AB
p!nð ~q; zÞ ¼

1ffiffiffi
z

p !#n½$3~qL þ ~$ & ~qT'#p%
BðqT; zÞ; (2)

where ~$ are Pauli matrices; #p;n are the proton or neutron
spinors; ~qT is the transverse component of the momentum
transfer;

~q L ¼ ð1( zÞmN: (3)

In the region of small 1( z ) 1 the pseudoscalar am-
plitude %BðqT; zÞ has the triple-Regge form

FIG. 2. (a) Born graph with single pion exchange;
(b) illustration of absorptive corrections.
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B!p
el ðsÞ, as is listed at the end of Sec. IVA (except ~B!p

el ðM2
XÞ

which should be kept as is).
The last variable to be specified is ", which is related to

z ¼ 1$M2
X=s via the relation for the invariant massMX of

the 5q system,

M2
X ¼

m2
3q þ k2T
1$ "

þm2
!qq þ k2T
"

; (30)

where kT is the relative transverse momentum of ð !qqÞ8 and
ð3qÞ8. For the large values of M2

X & m2
p that we are

interested in,

" ¼ m2
T

M2
X

¼ m2
T

sð1$ zÞ ; (31)

where we fix m2
T ¼ hm2

!qq þ k2Ti ¼ 1 GeV2, assuming that

hm2
!qqi' hk2Ti'm2

#.

The results for the 5q dipole survival probability
Eq. (16) calculated at

ffiffiffi
s

p ¼ 44:7 GeV and z ¼ 0:8, are
shown in Figs. 9 and 10.

V. SURVIVAL AMPLITUDE IN HADRONIC
REPRESENTATION

A. Expansion over multihadronic states

One can expand the 5-quark Fock state over the hadronic
basis,

jf3qg8f !qqg8i ¼ d0jpiþ d1jN!iþ d2jN2!iþ . . . : (32)

These components are associated with different suppres-
sion factors, which can be calculated via known hadron-
proton elastic amplitudes. Correspondingly, the absorption
corrected partial amplitude gets the form

fp!nðb; zÞ ¼ fBp!nðb; zÞSðhadrÞðbÞ; (33)

where SðhadrÞðbÞ is the survival amplitude averaged over
different hadronic components in (32).
Since the admixture of sea quarks in the proton is small,

the projection of the 5-quark state to the proton, the am-
plitude d0, must be small. The states that contribute consist
mainly of a nucleon accompanied by one or more pions
and other mesons, and therefore here we make the natural
assumption that the amplitude d1 is the dominant one,
since both states jf3qg8f !qqg8i and jN!i have the same
valence quark content. Then the survival amplitude of a
large rapidity gap mediated by pion exchange is related to
the amplitude of no-interaction of a p$ ! pair propagat-
ing through the target proton. Neglecting the difference in
impact parameters of the pion and proton, we get

SðhadrÞðbÞ ¼ S!pðbÞSppðbÞ
¼ ½1$ Im"ppðbÞ)½1$ Im"!pðbÞ): (34)

Here we expressed the hadron-nucleon survival amplitude
via the elastic partial amplitude "ðbÞ,

ShNðbÞ ¼ 1$ Im"hNðbÞ: (35)

An implicit energy dependence is assumed in here and
further on, unless specified.
Nevertheless, the calculation of the partial amplitudes

"hNðbÞ is still a challenge, and different models and ap-
proximations are known. For instance, if the total cross
section $hN

tot and the elastic slope BhN
el are known, and one

assumes a Gaussian shape for the differential hadron-
proton cross section, one gets

Im "hN
ðGaussÞðbÞ ¼

$hN
tot

4!BhN
el

exp
"
$ b2

2BhN
el

#
: (36)

At high energies, however, this is a poor approximation,
since the unitarity bound stops the rise of the partial
amplitude at small b, and the periphery becomes the
main source of the observed rise of the total cross sections
[22,23]. As a result, the shape of the b-dependence changes
with energy and cannot be Gaussian.
One has to incorporate unitarity corrections, and a popu-

lar way to do it is the eikonal approximation [24],

FIG. 10. Partial survival amplitude Sðb; zÞ at ffiffiffi
s

p ¼ 60 GeV
and z ¼ 0:8. The survival amplitude evaluated in hadronic
representation. Dot-dashed, dashed, and solid curves show the
pion and proton survival amplitudes and their product, respec-
tively.
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• Nonzero asymmetry is generated through phase 
interferences (Im[ηi(t)ηj(t)*] ≠ 0); 
at least either A or B is needed.


A. Interference in particle exchange


B. Interference in absorptive correction


• E.g. for forward neutrons [Kopeliovich, PRD 84]


A. π-a1 exchange interferences → leading


B. Absorptive correction → sub-leading
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What I did for 2+ years…
My calc. (failed)

N Δ

P

p
π

N N*(1520)

P

p
π

H-J Kim et. al., PRD 106, 054001

Δ Δ*(1600)

P

p
π

+

My calculation was stuck in how to 
make N(1/2) and Δ(3/2) coupled.

I thought this interference was 
necessary to generate nonzero AN. 
→ prohibited

Each phase differences of N and Δ exchanges gives sizable AN.

Using the fact that ηp ¼ þ1 and ηπ ¼ −1, we observe

dΔσ⊥ ∼
X1=2

λ¼−1=2
ðβiþλβ

j
−λ − βi−λβ

j
þλÞ

¼ ð1þ ηiηjÞβiþλβ
j
−λ: ð12Þ

Thus dΔσ⊥ vanishes when ηiηj ¼ −1. The spin-dependent
differential cross-section with Pomeron exchange is written
as sum of natural and unnatural parity states

dΔσ⊥ ¼ dΔσN⊥ þ dΔσU⊥: ð13Þ

Among the particles with the natural parity, the most
dominant trajectory with natural parity is the proton one.
The next one is the excited nucleon N%ð1520Þ of which the
spin-parity quantum numbers are given by JP ¼ 3=2−:

dΔσN⊥ ¼ 1

s

X

λ

βNþλβ
N%

−λ2ImPNP%
N%

×
X

k

GNN%

k ðtÞγppk ð0Þ
!
M2

X

s0

"
αkð0Þ

: ð14Þ

As for the unnatural parity states, the interference betweenΔ
and Δð1600Þ exchanges furnishes the most dominant con-
tribution:

dΔσU⊥ ¼ 1

s

X

λ

ðβΔþλβ
Δ%

−λÞ2ImPΔP%
Δ%

×
X

k

GΔΔ%

k ðtÞγppk ð0Þ
!
M2

X

s0

"
αkð0Þ

: ð15Þ

On the other hand, the diagonal terms with the leading
trajectories substantially contribute to the spin-averaged
differential cross section. We also take into account the
interferences (i ≠ j), since those terms are necessary to
describe the experimental data:

dσ ¼ 1

s

X

λ

#X

i

2ðβiþλÞ2jP2
i jGii

PðtÞ

þ
X

i≠j
βiþλβ

j
þλ2RePiP%

jG
ij
PðtÞ

$

× γppP ð0Þ
!
M2

X

s0

"
αPð0Þ

: ð16Þ

The triple Regge coupling Gij
PðtÞ is often parametrized

as GðtÞ ¼ Gð0Þebt, because it can not be theoretically
determined. In the present work, we parametrize the
form of the triple Regge couplings so that we can
describe the RHICf data: Gii

PðtÞ ¼ Gii
Pð0Þe−B

ii
Pjtj, Gij

PðtÞ ¼
Gij

Pð0Þ
ffiffiffiffiffi
jtj

p
e−B

ij
P jtj=mπ . We define the following parameters:

gijP ≡Gij
Pð0Þ=GNN

P ð0Þ; bijP ≡ Bij
P − BNN

P ð17Þ

and fit them to the RHICf data. In Table I, we list the
numerical values of gijP and bijP . Note that bijP comes from
the subtraction given by Eq. (13). Except for the PNN%

vertex, all the values of bijP are set to be zero to minimize
theoretical uncertainties. Finally, inserting Eqs. (14)–(16)
into Eq. (10), we arrive at the expression for the transverse
single-spin asymmetry:

AN ¼
P

λ½βNþλβ
N%

−λImPNP%
N% ð

ffiffiffiffiffi
jtj

p
=mπÞgNN%

P þ βΔþλβ
Δ%

−λImPΔP%
Δ% ð

ffiffiffiffiffi
jtj

p
=mπÞgΔΔ

%

P e−b
ΔΔ%
P jtj'

P
λ½
P

iðβiþλÞ2jP2
i jgiiPe−b

ii
Pjtj þ

P
i≠jβ

i
þλβ

j
þλRePiP%

jð
ffiffiffiffiffi
jtj

p
=mπÞg

ij
Pe

−bijP jtj'
: ð18Þ

IV. RESULTS AND DISCUSSION

The RHICf Collaboration has first measured AN for pþ
p↑ → π þ X as a function of pT with several different
ranges of xF given. In accordance with the Abarbanel-
Gross theorem where the triple Regge exchange does not
yield the AN in the backward direction [28], the backward
TSSA in RHICf experiment are almost consistent with zero
[25]. We thus concentrate on AN with positive values of xF.

In Fig. 2 we show the numerical results for AN given as a
function of the transverse momenta pT with four different
ranges of xF, compared with the RHICf data [25]. The
present results are in quantitative agreement with the data.
The value of AN starts to increase as pT increases till pT
reaches 0.2–0.3 GeV=c. Then, it seems saturated for a
while and enlarges again as pT further increases. Note that
in general the experimental uncertainties become larger as
pT increases.

TABLE I. Numerical values of the parameters gijP and bijP .
The first column lists the values of gijP with i and j given whereas
the second column shows the values of bijP .

gijP bijP ½GeV−2'
NN% 0.028 0.2
ΔΔ% −0.018 0
N%N% 0.10 0
ΔΔ 0.022 0
Δ%Δ% 0.079 0
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On the other hand, the diagonal terms with the leading
trajectories substantially contribute to the spin-averaged
differential cross section. We also take into account the
interferences (i ≠ j), since those terms are necessary to
describe the experimental data:
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The triple Regge coupling Gij
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and fit them to the RHICf data. In Table I, we list the
numerical values of gijP and bijP . Note that bijP comes from
the subtraction given by Eq. (13). Except for the PNN%

vertex, all the values of bijP are set to be zero to minimize
theoretical uncertainties. Finally, inserting Eqs. (14)–(16)
into Eq. (10), we arrive at the expression for the transverse
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p↑ → π þ X as a function of pT with several different
ranges of xF given. In accordance with the Abarbanel-
Gross theorem where the triple Regge exchange does not
yield the AN in the backward direction [28], the backward
TSSA in RHICf experiment are almost consistent with zero
[25]. We thus concentrate on AN with positive values of xF.

In Fig. 2 we show the numerical results for AN given as a
function of the transverse momenta pT with four different
ranges of xF, compared with the RHICf data [25]. The
present results are in quantitative agreement with the data.
The value of AN starts to increase as pT increases till pT
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in general the experimental uncertainties become larger as
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yield the AN in the backward direction [28], the backward
TSSA in RHICf experiment are almost consistent with zero
[25]. We thus concentrate on AN with positive values of xF.
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Figure 3 displays the numerical results for AN as a
function of xF with five different ranges of pT given [25].
The current results exhibit an outstanding fit with the
RHICf data, in particular, as pT becomes smaller. Note that
when pT approaches zero, AN is suppressed.
To scrutinize the current results, we plot AN as a function

of pT and xF in Fig. 4. One can see the curve where the AN

equals to zero due to
ffiffiffiffiffi
jtj

p
¼ 0 in the triple Regge coupling.

In the region where pT is lower than this curve, NN" term
governs the TSSA, especially for small xF. As for the
higher pT, NN" contributions have negative values. Large
and positive ΔΔ" term compensates it, so the total AN
becomes positive. In addition, the pole contributions NN
and N"N" gradually decrease as xF increases. N"N" term is

almost consistent with zero for pT > 0.8 GeV=c. Here
Δ"Δ" contribution comes into play to moderate AN . It is
notable to see the peak in the mid-pT range (∼0.5 GeV=c),
in particular, when xF is small. We can understand this
feature of AN by examining the characteristics of the
signature factor. At certain values of pT and xF, AN
becomes very sensitive to signature factor of the proton.
The peak structure of AN occurs because of this sensitivity.
On the other hand, when xF is large, the diagonal terms
such as NN, N"N", ΔΔ, and Δ"Δ" diagrams come into
play, the peak structure gets smeared. As xF becomes very
small (xF < 0.3), all the signature factors bring about a
rapid oscillation of AN . It indicates that the current scheme
of the triple Regge exchange breaks down when xF is
very small.

V. SUMMARY AND CONCLUSIONS

In this work, we aimed at investigating the transverse
single spin asymmetries for the neutral pion production
from inclusive polarized proton and proton collision,
emphasizing the triple Regge exchange that consists of
two baryons and a Pomeron. The numerical results of the
current work are in quantitative agreement with the RHICf
data. We discussed the feature of the transverse single spin
asymmetries with pT and xF varied. When the pseudor-
apidity is large and xF is not very small, we can interpret the
neutral pion production from inclusive polarized proton and
proton collision as a diffractive one.
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FIG. 2. Numerical results for the TSSA as a function of pT with
several ranges of xF given. The present results are depicted by the
triangles. The open circles with error bars illustrate the RHICf
data [25].

FIG. 3. The TSSA as a function of xF with several ranges of pT
given. Notations are the same as in Fig. 2.

FIG. 4. The 3d plot of AN as a function of pT and xF.
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from inclusive polarized proton and proton collision,
emphasizing the triple Regge exchange that consists of
two baryons and a Pomeron. The numerical results of the
current work are in quantitative agreement with the RHICf
data. We discussed the feature of the transverse single spin
asymmetries with pT and xF varied. When the pseudor-
apidity is large and xF is not very small, we can interpret the
neutral pion production from inclusive polarized proton and
proton collision as a diffractive one.
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FIG. 2. Numerical results for the TSSA as a function of pT with
several ranges of xF given. The present results are depicted by the
triangles. The open circles with error bars illustrate the RHICf
data [25].

FIG. 3. The TSSA as a function of xF with several ranges of pT
given. Notations are the same as in Fig. 2.

FIG. 4. The 3d plot of AN as a function of pT and xF.
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Recently, the RHICf Collaboration measured the transverse single-spin asymmetries of the very
forward neutral pion in polarized pþ p collisions at

ffiffiffi
s

p
¼ 510 GeV, produced at large pseudorapidity

(η≳ 6). The data show large asymmetries both in longitudinal momentum fraction xF and transverse
momentum pT at pT < 1 GeV=c. Employing baryonic triple Regge exchanges, we describe the complete
RHICf data for the first time and show that the neutral pion production at low pT can be interpreted as a
diffractive one.

DOI: 10.1103/PhysRevD.106.054001

I. INTRODUCTION

The spin of the nucleon has been one of the most crucial
issues in hadronic physics since the EMC experiment [1].
The nucleon consists of not only three valence quarks but
also other partons such as antiquarks and gluons, so the
nucleon spin should originate from the partons inside it and
their orbital angular momenta [2] together with the con-
tribution of the valence quarks. Thus, one of the most
profound questions was addressed: “How does the spin of
the nucleon arise?” It motivated the future plan for the
Electron-Ion Collider (EIC) [3]. Meanwhile, the transverse
spin of the nucleonprovides yet another aspect to the internal
structure of the nucleon. The transverse momentum-
dependent functions (TMDs) and the generalized parton
distributions (GPDs) furnish the multifaceted aspect
of the structure of the polarized nucleon in the transverse
plane (see recent reviews [4,5]). Furthermore, sizable trans-
verse single-spin asymmetries (TSSA) of the neutral
pion in inclusive pp collisions have been continuously
reported well over decades [6–11] (see also recent reviews
[5,12]). Since the experimental data from the PHENIX and
STAR Collaborations were obtained at higher values of the
transverse momentum (pT ≳ 2 GeV=cÞ in the midrapidity
coverage, where the pseudorapidity is given as 2 < η < 4
[8–11], QCD-based approaches have been employed such

as the TMDs [13–15] and collinear twist-3 factorization
[16–23] to describe the experimental data. The Jefferson
Lab Angular Momentum (JAM) Collaboration [24] has
carried out the simultaneous QCD global analysis, consid-
ering the data on the TSSA from various high-energy
processes.
The TSSA at low transverse momentum in the large

pseudorapidity displays the nonperturbative diffractive
nature. The RHICf Collaboration measured the TSSA
of the neutral pion in transversely polarized p↑ þ p
collision at

ffiffiffi
s

p
¼ 510 GeV and reported that the TSSA

increased rapidly as functions of both the longitudinal
momentum fraction xF and low transverse momentum pT
(pT < 1 GeV=c) at the pseudorapidity larger than 6
(η > 6) [25]. The RHICf experiment data posed a question
of whether the large values of the TSSA of π0 are due to
diffractive scattering: The values of TSSA rise as pT
increases and reach around 25% at pT ≃ 0.8 GeV=c.
The dependence on the longitudinal momentum fraction
or the Feynman-x variable (xF) reveals even a drastic
feature. In the present work, we will answer for the first
time the question addressed by the RHICf Collaboration:
Considering the p↑ þ p → π0 þ X process at low pT as
diffractive scattering and introducing the baryonic triple
Regge exchanges, we explain the RHICf data very well.
The current work is organized as follows: In Sec. II, we

briefly review the triple Regge formalism, which is essen-
tial to describe inclusive polarized proton-proton collision
with the pion production. In Sec. III, we show how the
TSSA can be derived, based on the triple Regge formalism.
In Sec. IV, we demonstrate that triple Regge exchange
explains successfully the RHICf experimental data on
TSSA. We then discuss the significance of the interference
effects between triple Regge diagrams. Section V summa-
rizes the present work and draw conclusions.
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Using the fact that ηp ¼ þ1 and ηπ ¼ −1, we observe

dΔσ⊥ ∼
X1=2

λ¼−1=2
ðβiþλβ

j
−λ − βi−λβ

j
þλÞ

¼ ð1þ ηiηjÞβiþλβ
j
−λ: ð12Þ

Thus dΔσ⊥ vanishes when ηiηj ¼ −1. The spin-dependent
differential cross-section with Pomeron exchange is written
as sum of natural and unnatural parity states

dΔσ⊥ ¼ dΔσN⊥ þ dΔσU⊥: ð13Þ

Among the particles with the natural parity, the most
dominant trajectory with natural parity is the proton one.
The next one is the excited nucleon N%ð1520Þ of which the
spin-parity quantum numbers are given by JP ¼ 3=2−:

dΔσN⊥ ¼ 1

s

X

λ

βNþλβ
N%

−λ2ImPNP%
N%

×
X

k

GNN%

k ðtÞγppk ð0Þ
!
M2

X

s0

"
αkð0Þ

: ð14Þ

As for the unnatural parity states, the interference betweenΔ
and Δð1600Þ exchanges furnishes the most dominant con-
tribution:

dΔσU⊥ ¼ 1

s

X

λ

ðβΔþλβ
Δ%

−λÞ2ImPΔP%
Δ%

×
X

k

GΔΔ%

k ðtÞγppk ð0Þ
!
M2

X

s0

"
αkð0Þ

: ð15Þ

On the other hand, the diagonal terms with the leading
trajectories substantially contribute to the spin-averaged
differential cross section. We also take into account the
interferences (i ≠ j), since those terms are necessary to
describe the experimental data:

dσ ¼ 1

s

X

λ

#X

i

2ðβiþλÞ2jP2
i jGii

PðtÞ

þ
X

i≠j
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j
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jG
ij
PðtÞ
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× γppP ð0Þ
!
M2

X

s0

"
αPð0Þ

: ð16Þ

The triple Regge coupling Gij
PðtÞ is often parametrized

as GðtÞ ¼ Gð0Þebt, because it can not be theoretically
determined. In the present work, we parametrize the
form of the triple Regge couplings so that we can
describe the RHICf data: Gii

PðtÞ ¼ Gii
Pð0Þe−B

ii
Pjtj, Gij

PðtÞ ¼
Gij

Pð0Þ
ffiffiffiffiffi
jtj

p
e−B

ij
P jtj=mπ . We define the following parameters:

gijP ≡Gij
Pð0Þ=GNN

P ð0Þ; bijP ≡ Bij
P − BNN

P ð17Þ

and fit them to the RHICf data. In Table I, we list the
numerical values of gijP and bijP . Note that bijP comes from
the subtraction given by Eq. (13). Except for the PNN%

vertex, all the values of bijP are set to be zero to minimize
theoretical uncertainties. Finally, inserting Eqs. (14)–(16)
into Eq. (10), we arrive at the expression for the transverse
single-spin asymmetry:

AN ¼
P

λ½βNþλβ
N%

−λImPNP%
N% ð

ffiffiffiffiffi
jtj

p
=mπÞgNN%
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−bijP jtj'
: ð18Þ

IV. RESULTS AND DISCUSSION

The RHICf Collaboration has first measured AN for pþ
p↑ → π þ X as a function of pT with several different
ranges of xF given. In accordance with the Abarbanel-
Gross theorem where the triple Regge exchange does not
yield the AN in the backward direction [28], the backward
TSSA in RHICf experiment are almost consistent with zero
[25]. We thus concentrate on AN with positive values of xF.

In Fig. 2 we show the numerical results for AN given as a
function of the transverse momenta pT with four different
ranges of xF, compared with the RHICf data [25]. The
present results are in quantitative agreement with the data.
The value of AN starts to increase as pT increases till pT
reaches 0.2–0.3 GeV=c. Then, it seems saturated for a
while and enlarges again as pT further increases. Note that
in general the experimental uncertainties become larger as
pT increases.

TABLE I. Numerical values of the parameters gijP and bijP .
The first column lists the values of gijP with i and j given whereas
the second column shows the values of bijP .

gijP bijP ½GeV−2'
NN% 0.028 0.2
ΔΔ% −0.018 0
N%N% 0.10 0
ΔΔ 0.022 0
Δ%Δ% 0.079 0
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Great job!

Are these numbers consistent with those from the 
π0 cross sections? → compare RHICf or low-√s data
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AN(xF, pT) in p↑p→πX at √s = 19.4 GeV
E704 at √s = 19.4 GeV

π+

π0

π-

• Assuming we are in the phase space where the 
triple-regge diagram works reasonably,


• π+, π0: nucleon and Δ exchanges


• π-: Δ exchanges


• Interesting to see how H-J Kim’s model behaves for 
forward neutral and charged πs, for example in the 
phase space of E704


• Can estimate the BG contribution of the soft 
process to QCD-based models? 

Inclusively measured AN is the weighted sum of ANs 
for each process: 1-diff, 2-diff, non-diff, elastic, BG etc.
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Next fiscal year’s plan
• An urgent need is reinforcement of the computing resources in KEK.


• Search for other processes possibly contributing to π0 cross section and asymmetry


• Implementation of the 2π MAID model in the UPC simulation codes (no need to hurry up?)

Hadronic UPC √s (GeV)

p↑-p Ongoing Negligible 510

p↑-Al
Similar with 

p-p? 200

p↑-Au
Similar with 

p-p? 2π MAID? 200

etc?


