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SciDAC-5 project overview

Project status
• Multigrid
• DDHMC
• Critical slowing down



Electronic and hardware trends: what can we say now about the future?

Location System
Interconnect (GB/s) 

per node (X+R)

Floating point 
performance (GF/s) 

per node

Memory Bandwidth 
(GB/s) per node

Year
System peak 

(PF/s)
FP / Interconnect FP / Memory Memory / Interconnect

LLNL BlueGene/L 2.1 5.6 5.5 2004 0.58 2.7 1.0 2.6
ANL BlueGene/P 5.1 13.6 13.6 2008 0.56 2.7 1.0 2.7
ANL BlueGene/Q 40 205 42.6 2012 20 5.1 4.8 1.1

ORNL Titan 9.6 1445 250 2012 27 150.5 5.8 26.0
NERSC Edison 32 460 100 2013 2 14.4 4.6 3.1
NERSC Cori/KNL 32 3050 450 2016 28 95.3 6.8 14.1
ORNL Summit 50 42000 5400 2018 194 840.0 7.8 108.0
RIKEN Fugaku 70 3072 1024 2021 488 43.9 3.0 14.6
NERSC Perlmutter/GPU 200 38800 6220 2022 58 194.0 6.2 31.1
ORNL Frontier 200 181200 12800 2022 >1630 906.0 14.2 64.0

All DOE Exascale computing is GPU accelerated

Huge gains in floating point
not matched by gains in memory (14x) and
interconnect (300x)

Machines increasingly better suited for dense matrices
and machine learning

Lots of diversity and difficulty:

• Systems with AMD, Intel, Nvidia GPUs
• Systems with CPU cores (+ HBM : Fujitsu,

Intel SPR)
• HIP, SYCL, CUDA and conventional

programming
• Host memory, GPU memory, DDR+HBM numa

on CPU

Forthcoming systems will increase floating point per-
formance dramatically, but not interconnect.

Lattice gauge theory algorithms for gauge
field sampling must change to exploit.

Lattice gauge theory correlation function
calculations can run brilliantly



Grid support & developments

Grid has support for: HIP, SYCL, CUDA and conventional OpenMP loop acceleration

• Portability key: if read one bit of Grid after this talk, make it:
https://github.com/paboyle/Grid/blob/develop/Grid/threads/Accelerator.h

• For loop macro captures loop bodies in (device) function objects
• SIMD and SIMT with single source kernels

Unified memory model OR distinct accelerator memory

• Software managed device cache: O(1) cost lookup, O(1) true LRU eviction,
evict-next/transient options

Recent experimental additions:

• RRRR / IIII data layout - relevant to Fugaku.
Needs a project for A64FX support - Tilo, Nils?.

• Padded cell & General stencil
Optimise staggered smeared forces
off axis stencil operators - HDCG style non-local coarsening
(=complicated Covariant transport paths: c.f. Lehner, Wettig!)

Broad use: GPT (Lehner), Hadrons (Portelli), Qlat (Jin), CPS (Jung), MILC (Detar)

Portability helps: RBC-UKQCD is running on

(Europe) Leonard/Cineca, Lumi/CSC, Booster/Juelich

(USA) Perlmutter/NERSC, Summit,Crusher, Frontier/ORNL

(Small islands that are definitely not in Europe) Tursa/Edinburgh

Large effort by many people, notably C. Lehner, C. Jung, C. Kelly, A. Portelli

https://github.com/paboyle/Grid/blob/develop/Grid/threads/Accelerator.h


Performance

Perlmutter(Cray/Nvidia A100), Crusher (Cray/AMD MI250), Summit (IBM/Nvidia V100)

Expect Aurora will have

• Substantially more single node performance than Crusher
• Same network technology as Crusher
• ⇒ Performance loss to communication will be a larger hit !!!



Nvidia GPU performance

Provably unimprovable:

Dslash kernel: 39% FMA pipe, 80% L2, 78% memory; hard to improve by much



Edinburgh Tursa / Juelich Booster / Cineca Leonardo

10TF/s per node including communication

32^4 comms and
Compute perfectly
Overlapped

Stopped using Nvlink
With GPU, use RDMA

Read coalesce kernels

750us -> 60us

6.6TF/s -> 9.9 TF/s

Grid benchmark
5.3 last Nov, now 9.9
With many improvements

Atos nodes, 4 x A100 with 4x Mellanox HDR

Gives 185 GB/s bidirectional interconnect bandwidth

Can ’prove’ code is optimal: saturates memory bandwidth on every one of 22 kernels in sequence



ORNL: Frontier/Crusher. CSC: LUMI

4x Slingshot 200 Gbit/s per node

Mapping GPU’s 0,1,2,3,7,6,5,4

Then MPI ranks {000,001,010,011,100,101,110,111} are the vertices of a 23 cube in network



Frontier/Crusher (ORNL), LUMI (CSC)

7.4TF/s per node including communication

Cray/AMD 4x MI250 nodes, 4x Slingshot 11

After various fixes: constant performance

’tricks’ to get MPI using DMA hardware between GPUs

Infinity link intranode is relatively slow compared to NVlink

Network limit is same as Tursa and performance withon 30%

No ’proof’ it is optimal yet: might hope for further gains



Algorithms for the future?

Ratio of single GPU code to multinode code is 2:1 (Crusher)

Ratio of single GPU code to multinode code is 7:1 (Perlmutter phase 1)

Ratio on $500M Aurora may be similar to Perlmutter (but same network as Crusher)

Need new algorithms ⇒ SciDAC-5



SciDAC-5 project



Hybrid Monte Carlo

Auxiliary Gaussian integral over conjugate momentum field
∫
dπe

−π2
2

Lives in Lie algbra; serves only to move U round the group Manifold∫
dπ

∫
dφ

∫
dU e−

π2
2 e−SG [U]e−φ∗(M†M)−1φ

Outer Metropolis Monte Carlo algorithm

• Draw momenta
• Draw pseudofermion as gaussian η = M−1φ

• Metropolis acceptance step

Metropolis proposal includes inner molecular dynamics at constant Hamiltonian:

H =
π2

2
+SG [U] + φ

∗(M†M)−1
φ

Drive as U̇ = iπU derive HMC EOM from:

Ḣ = 0 = π [π̇ + iU ·∇USTA]

Finite timestep performed in Lie algebra, keeps U on group manifold:

U ′ = e iπdtU

Force terms ∇US via product and chain rule; rules of matrix differentiation.

Must invert M†M at each timestep of evolution in MD force

δ(M†M)−1 =−(M†M)−1[(δM†)M +M(δM)](M†M)−1



SciDAC-5 project

“Multiscale acceleration: Powering future discoveries in High Energy Physics”

5 year project 2022/10 to 2027/10

USQCD:
• 3 Labs: ANL, BNL (lead), FNAL
• 8 Universites: Columbia, BU, MSU, Illinois, UIUC, Utah

SciDAC Fastmath :
• LBNL, MIT, SUNY Buffalo

Algorithmic research collab. between USQCD HET and SciDAC institutes
(applied math/computer science)

Funded by both DOE/HEP and DOE/ASCR

3 work packages:
• WP1: Multigrid for Domain Wall and Staggered Fermions
• WP2: Transformational sampling algorithms
• WP3: Large domain decomposed HMC: minimise communication



SciDAC-5 personnel

https://scidac5-fastmath.lbl.gov/
https://petsc.org/release/

SciDAC:

MIT - Youssef Marzouk (FastMath Uncertainty Quantification)

LBNL - Mark Adams (FastMath PETSc)

SUNY Buffalo - Matt Knepley (PETSc), Joe Pusztay, Duncan Clayton

USQCD:

ANL - James Osborne, Xiaoyong Jin

BNL - Peter Boyle, Taku Izubuchi, Chulwoo Jung, Christopher Kelly, Nobu Matsumoto

FNAL - Andreas Kronfeld, Jim Simone

Boston University - Rich Brower

Columbia - Norman Christ, Yikai Huo

Indiana - Steve Gottlieb

MSU - Alexei Bazavov

UIUC - Aida El-Khadra

Utah - Carleton Detar, David Clarke

Postdoc and PhD student positions are being filled

https://scidac5-fastmath.lbl.gov/
https://petsc.org/release/


Work package 1

SciDAC: Adams, Boyle, Brower, Clayton, Gottlieb, Kelly, Knepley, Kronfeld,
Pusztay

Collaborators: Clark, Weinberg, Owen, others



PETSc Collaboration

Widely used world class PDE solver and multigrid HPC library in “C”

Expert applied mathematicians

Broad range of algorithms

Aim: expose our problems to PETSc team in a way we can work on them together

Status:

• Completely documented Wilson operator
• PETSc based implementation of Wilson (Pusztay, Knepley, Clayton)
• free field Fourier verification
• regresses to Grid, can load NERSC configurations (PB)
• PETSc based implementation of DWF (PB)
• Wilson multigrid under development



SciDAC-5 multigrid & half plane condition
Algorithmic research: I bet we’ll break every non-Hermitian Krylov
solver in PETSc

Spectrum of DWF presents problems to non-Hermitian solvers

Why? Krylov space is the span of polynomials of matrix M.
Let |i〉 be the set of right eigenvectors, P(x) = cnx

n a
polynomial

M|i〉 = λi |i〉
η = ηi |i〉

ψ
Krylov = P(M)η = (cnλ

n
i )ηi |i〉

ψ
True =

1

λi
ηi |i〉

There exists a contour C contained entirely within the (dense
in large/infinite volume) spectrum such that∮

C
PKrylov(z)dz = 0∮

C
F True(z)dz =

∮
C

1

z
dz = 2π i

Thus the Krylov polynomal and true solution must differ
within the domain of the spectrum

Polynomial must differ from solution between discrete
eigenvalues and low order smooth polynomial is inadequate

Slow convergence, perhaps of order system size
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Domain wall: where to?

arXiv:1205.2933, Cohen, Brower: real positive (M† precondition)
coarsen M†M (2hop)

arXiv:1402.2585, PB: real indefinite (RB-NE precondition)
coarsen M†

pcMpc (4hop)

arXiv:1611.06944, arXiv:2203.17119, PB, Yamaguchi: real indefinite (Γ5 precondition)
coarsen Γ5M (1hop)

arXiv:2004.07732, Weinberg et al: complex positive half plane (M†
PV precondition),

coarsen M (1 hop) and M†
PV (1 hop)

• 2D U(1) arXiv:2004.07732
• 4D SU(3) arXiv:2203.17119

Possible plan:

Directly coarsen 2-hop matrix M†
PVM

PETSc opens up all sorts of algebraic and other multigrid options

Good ideas arising from applied math community



Work package 2

SciDAC: Izubuchi, Matsumoto, Marzouk, Christ, Jung, Boyle, Brower, Osborne,
X. Jin

Collaborators: Tomiya, L. Jin



SciDAC-5 Sampling algorithms

Generalised Fourier acceleration of HMC

• Generalise Riemanian Manifold HMC ECP for new momentum distributions
Jung, Christ + Marzouk arXiv:2112.04556, arXiv:1710.07036

Trivialising maps and Field Transformation-HMC (Izubuchi, Matsumoto + Marzouk)∫
dUe−S[U] =

∫
dV

∣∣∣∣ dUdV
∣∣∣∣e−S[U(V )]

• arXiv:2212.11387, (Nobu Matusmoto Lattice 2022), Matsumoto THIS WORKSHOP
+ Akio Tomiya, Luchang Jin, PB, Christoph Lehner, Chulwoo Jung

• Effectively Luscher’s Wilson flowed HMC but with large flow timestep arXiv:1009.5877
• Currently in Qlat (Jin) quenched Wilson flow code

General trivialising flows. Multiple Wilson loops (Matsumoto, Izubuchi, Tomiya, Jin)

• Migrating plaquette flow HMC to Grid (PB); add fermions
Generalise Grid smear HMC to include gauge action; Will add Jacobian
Link smear in multiple steps, operating on disjoint subsets of links at each step

UV smearing function U(V ) brings tunable Fourier acceleration with incomplete trivialisation



Work package 3 : DDHMC for odd flavours

SciDAC: Bazavov, Boyle, Brower, D. Clarke, Kelly, Detar, El-Khadra, Kronfeld,
Simone

Collaborators: D. Bollweg, A. Yamaguchi



Domain decomposition : arXiv:2203.17119

A matrix can be UDL factorised around its lower right block as follows,(
D C
B A

)
=

(
1 CA−1

0 1

)(
Sχ 0
0 A

)(
1 0

A−1B 1

)
, (1)

where the Schur complement,
S = D−CA−1B.

Divide space time into “black” and “white” subsets.

Reorder vectors as black and white vectors.

Differential operators are matrices connecting black to black, white to white and cross terms
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CERN-PH-TH/2004-177

Schwarz-preconditioned HMC algorithm

for two-flavour lattice QCD

Martin Lüscher

CERN, Physics Department, TH Division

CH-1211 Geneva 23, Switzerland

Abstract

The combination of a non-overlapping Schwarz preconditioner and the Hybrid Monte Carlo

(HMC) algorithm is shown to yield an efficient simulation algorithm for two-flavour lattice

QCD with Wilson quarks. Extensive tests are performed, on lattices of size up to 32×243,

with lattice spacings a " 0.08 fm and at bare current-quark masses as low as 21 MeV.

1. Introduction

At present, perhaps the greatest obstacle in lattice QCD is the fact that the efficiency

of the established simulation algorithms rapidly decreases when the continuum limit

is approached and the masses of the light quarks are scaled towards their physical

values [1–11]. The dynamics of these algorithms is still not fully understood, but it is

quite clear that the poor scaling behaviour is driven by the condition number of the

lattice Dirac operator, which grows inversely proportionally to the lattice spacing

and the quark mass.

Preconditioning is usually perceived as a technique for the efficient solution of ill-

conditioned systems of linear equations [12]. This kind of preconditioning is routinely

applied in lattice QCD to accelerate the solver for the lattice Dirac equation. While

the solver is a central element of the HMC simulation algorithm [13], it is also

possible to precondition this algorithm itself, using another preconditioner perhaps,

by factorizing the quark determinant into the determinants of the preconditioners

and the preconditioned Dirac operator. The magnitude of the quark force terms in

1



DDHMC refresher

Fermion operator may be factored:(
DΩ D∂

D
∂̄

DΩ̄

)
=

(
1 D∂D

−1
Ω̄

0 1

)(
DΩ−D∂D

−1
Ω̄

D
∂̄

0
0 DΩ̄

)(
1 0

D−1
Ω̄

D
∂̄

1

)
. (2)

The factors L, M, and U are obvious and the determinant is:

detD = detDΩ detDΩ̄ det
{

1−D−1
Ω D∂D

−1
Ω̄

D
∂̄

}
,

Luscher’s approach:

small domains 44 to 64

HMC MD integrate gauge action and local determinants for each domain without
communication

Fits within L2 cache of a CPU core

Small cell provides IR regulator for Dirichlet Dirac solves

Exterior boundary gauge links are frozen (cross domain and in surface plane)



Boundary determinant

Handling the Schur complement “boundary” determinant requires care

χ = 1−D−1
Ω D∂D

−1
Ω̄

D
∂̄

Luscher restricted to exterior boundary of Ω

R = P
∂̄
−P

∂̄
D−1

Ω D∂D
−1
Ω̄

D
∂̄

because in the right basis χ takes the form

χ =

(
1−X 0
Y 1

)
so det χ = detR = det(1−X )

For pseudofermion action φ
†
∂̄

(RR†)−1φ
∂̄

, 3D pseudofermion,

R−1 = P̂
∂̄
− P̂

∂̄
D−1D̂

∂̄

δR−1 = P
∂̄
D−1δDD−1D

∂̄
.

Pauli-Villars (or Hasenbusch) requires

φ
†
∂̄
P†R−†R−1Pφ

∂̄
.

and δR = P
∂̄
D−1

Ω (δDΩ)D−1
Ω D∂D

−1
Ω̄

D
∂̄

+P
∂̄
D−1

Ω D∂D
−1
Ω̄

(δDΩ̄)D−1
Ω̄

D
∂̄
.

Doesn’t work for odd flavours (nested solve needed)



What not to like about Lucher’s approach

Not friendly to odd flavours

Luscher and collaborators don’t use it - spikes in δH, too many inactive links

Structured as lots of serial small volume evolutions: good for CPUs

Need a GPU friendly approach: seek gain of communication avoidance, but not SMALL cell

Make it as friendly as possible to GPUs: domain as big as a multi-GPU exascale node

• Expect to lose IR bound on subdomain solves
• Expect to gain fidelity and large force suppression with bigger inactive zones/more

efficiency
• Perturbative massless zero momentum two point function ∝ t−3



Two flavour determinant

D̃ is Dirichlet operator
Structure pseudofermion factors as:

detP(D†
l Dl )

−1P† = detD̃l (D
†
l Dl )

−1D̃†

det P̃(D̃†
l D̃l )

−1P̃†

detP(P̃†P̃)−1P†

insert multiple Dirichlet BC Hasenbuch intermediate mass preconditioning.

det
{

1−D−1
Ω D∂D

−1
Ω̄

D
∂̄

}
=

detD

detDΩ detDΩ̄

,

2 flavour pseudofermion action:

S2f = φ
†Ddirichlet(D

†D)−1D†
dirichletφ

Looks like a “Hasenbusch” operator ratio, but rather than mass preconditioning operators are
identical everywhere except the boundary between domains.
Pseudofermion fills entire four volume, so different stochastic estimate of same determinant.



Force estimation

Ddirichlet = D + ∆D

S2f = φ
†
φ

+ φ
†∆D†D−1

φ

+ φ
†D−†∆Dφ

+ φ
†∆D(D†D)−1∆Dφ

Introduces surface to bulk pseudofermion coupling terms

To be expect as ”Y” term in

χ =

(
1−X 0
Y 1

)



Fractional powers: DD-RHMC

What about the strange quark?

Must be able to take fractional powers of determinant

Alternate approach to boundary determinant allows to avoid nested inversion in Schur
complement

RHMC boundary pseudofermion:

SB
1f = φ

†
1 (D†

dirichletDdirichlet)
1
4 (D†D)−

1
2 (D†

dirichletDdirichlet)
1
4 φ1

RHMC local 1 flavor determinant ratio

SL
1f = φ

†
2 (PdirichletPdirichlet)

1
4 (D†

dirichletDdirichlet)
− 1

2 (PdirichletPdirichlet)
1
4 φ2

RHMC boundary Pauli Villars

SBP
1f = φ

†
3 (P†P)

1
4 (PdirichletPdirichlet)

− 1
2 (P†P)

1
4 φ3



163×48, β = 2.13, mud = 0.01 two flavour run
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Two favour, 3D pseudofermion, m=0.01
Two favour, 4D pseudofermion, m=0.01
One favour, 4D pseudofermion, m=0.04
One favour, 4D pseudofermion, m=0.01

2 flavour 4D pseudofermion has larger force than 2f 3D pseudofermion

1+1 flavour 4D pseudofermion has smaller force than 2f 3D pseudofermion

Odd flavour domain decomposition is now possible

Worth pursuing! arXiv:2203.17119



Large volume run β = 2.25, 483×96, mud = 0.00078

Close to physical, but Ls = 12 not Ls = 24

After tuning, HMC trajectory on 16 Crusher nodes runs in 90mins

For comparison: Summit - 128 nodes takes 1h

Seek to tune DDHMC to match or exceed.

Crusher has good communications: Expect any gain will be strictly limited



Nice surprise !

Subdomain solves are MUCH faster than full solves

Lower iteration count MULTIPLIES communicatoins gain

Applies to all intermediate Hasenbusch factors in my DDHMC scheme

Cell Iterations Boundary Conds
pppa 48x48x48x96 12351 antiperiodic
pppd 48x48x48x96 11864 open time
dddd 48x48x48x96 7349 open 4 dirs
pppd 48x48x48x48 10015 dirichlet
pppd 48x48x48x24 7416 dirichlet
ppdd 48x48x24x24 5150 dirichlet
pddd 48x24x24x24 4324 dirichlet
dddd 24x24x24x24 3692 dirichlet



Why so much? Look at difference in low mode eigenspectrum
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Lowest lying eigenvectors of the (block diagonal) Dirichlet operator on four 483×24 cells in a
483×96 lattice.

Modes are projected into 1± γt parity

components to look for edge effects at domain boundaries.



Why so much?

Dirichlet BC on modes forces them to zero at boundary

This forces (covariant) curvature and raises eigenvalue

Enough to reduce solver iterations 4x

Doesn’t really support cute theories about cutting up instantons, global vs local topology (!)



Why so much?

Dirichlet BC on modes forces them to zero at boundary

This forces (covariant) curvature and raises eigenvalue

Enough to reduce solver iterations 4x

Doesn’t really support cute theories about cutting up instantons, global vs local topology (!)



483 forces
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1+1f boundary
2f boundary
eofa strange

Pattern of larger force with 2f boundary repeats

Continue with rational 1+1 f boundary

Introducing partial dirichlet BCs with further force reduction

• Surface physical fields remain connected, 5d bulk is disconnected



483 tuning status - Prelimibary Work In Progress

Work in progress:

Do NOT yet have a wall clock gain or parity.

Started to conserve Hamiltonian for 1f + 1f boundary determinant

slightly slower time O(7000s) vs O(5500s)

• I am recalculating an expensive Hamiltonian redundantly
• Running Rational approximation in double precision and comparing to 2x faster mixed

precision HMC

Working on mixed precision multishift CG

Working on tuning residuals pole by pole in rational approximation

Working on right integrator timestep heirarchy

Plan to look at multishift-multi-RHS (Keegan+De Forcrand arXiv:1808.01829 )

Two possible 2x speed ups, mixed precision more certain

Preliminary Sketch - this is NOT YET an equal acceptance comparison
algorithm Dfull Ddirichlet

HMC 421648 0
DDHMC 161708 357316



Summary

Grid gives good cross platform single source performance

CPU/GPU unified programming that is well optimised for both

Engineering limits like bandwidths are hit

Multiscale physics AND computer engineering BOTH dictate new algorithm research

⇒ SciDAC-5 research directions

• Multigrid for DWF (and staggered) are intrinsically harder than Wilson
• Advanced multiscale aware gauge sampling
• Domain decompostion to improve computational locality


