## QCD software and algorithms for the exascale

Peter Boyle (BNL)

- Grid software and the exascale
- SciDAC-5 project overview
- Project status
  - Multigrid
  - DDHMC
  - Critical slowing down



## Electronic and hardware trends: what can we say now about the future?

| Location | System         | Interconnect (GB/s)<br>per node (X+R) | Floating point<br>performance (GF/s)<br>per node | Memory Bandwidth<br>(GB/s) per node | Year | System peak<br>(PF/s) | FP / Interconnect | FP / Memory | Memory / Interconnect |
|----------|----------------|---------------------------------------|--------------------------------------------------|-------------------------------------|------|-----------------------|-------------------|-------------|-----------------------|
| LLNL     | BlueGene/L     | 2.1                                   | 5.6                                              | 5.5                                 | 2004 | 0.58                  | 2.7               | 1.0         | 2.6                   |
| ANL      | BlueGene/P     | 5.1                                   | 13.6                                             | 13.6                                | 2008 | 0.56                  | 2.7               | 1.0         | 2.7                   |
| ANL      | BlueGene/Q     | 40                                    | 205                                              | 42.6                                | 2012 | 20                    | 5.1               | 4.8         | 1.1                   |
| ORNL     | Titan          | 9.6                                   | 1445                                             | 250                                 | 2012 | 27                    | 150.5             | 5.8         | 26.0                  |
| NERSC    | Edison         | 32                                    | 460                                              | 100                                 | 2013 | 2                     | 14.4              | 4.6         | 3.1                   |
| NERSC    | Cori/KNL       | 32                                    | 3050                                             | 450                                 | 2016 | 28                    | 95.3              | 6.8         | 14.1                  |
| ORNL     | Summit         | 50                                    | 42000                                            | 5400                                | 2018 | 194                   | 840.0             | 7.8         | 108.0                 |
| RIKEN    | Fugaku         | 70                                    | 3072                                             | 1024                                | 2021 | 488                   | 43.9              | 3.0         | 14.6                  |
| NERSC    | Perlmutter/GPU | 200                                   | 38800                                            | 6220                                | 2022 | 58                    | 194.0             | 6.2         | 31.1                  |
| ORNL     | Frontier       | 200                                   | 181200                                           | 12800                               | 2022 | >1630                 | 906.0             | 14.2        | 64.0                  |

#### All DOE Exascale computing is GPU accelerated

- Huge gains in floating point not matched by gains in memory (14x) and interconnect (300x)
- Machines increasingly better suited for dense matrices and machine learning
- Lots of diversity and difficulty:
  - Systems with AMD, Intel, Nvidia GPUs
  - Systems with CPU cores (+ HBM : Fujitsu, Intel SPR)
  - HIP, SYCL, CUDA and conventional programming
  - Host memory, GPU memory, DDR+HBM numa on CPU



Forthcoming systems will increase floating point performance dramatically, but not interconnect.

- Lattice gauge theory algorithms for gauge field sampling *must* change to exploit.
- Lattice gauge theory correlation function calculations can run brilliantly



## Grid support & developments

Grid has support for: HIP, SYCL, CUDA and conventional OpenMP loop acceleration

- Portability key: if read one bit of Grid after this talk, make it: https://github.com/paboyle/Grid/blob/develop/Grid/threads/Accelerator.h
- · For loop macro captures loop bodies in (device) function objects
- SIMD and SIMT with single source kernels
- Unified memory model OR distinct accelerator memory
  - Software managed device cache: O(1) cost lookup, O(1) true LRU eviction, evict-next/transient options
- Recent experimental additions:
  - RRRR / IIII data layout relevant to Fugaku. Needs a project for A64FX support - Tilo, Nils?.
  - Padded cell & General stencil
     Optimise staggered smeared forces
     off axis stencil operators HDCG style non-local coarsening
     (=complicated Covariant transport paths: c.f. Lehner, Wettig!)
- Broad use: GPT (Lehner), Hadrons (Portelli), Qlat (Jin), CPS (Jung), MILC (Detar)

Portability helps: RBC-UKQCD is running on

- (Europe) Leonard/Cineca, Lumi/CSC, Booster/Juelich
- (USA) Perlmutter/NERSC, Summit, Crusher, Frontier/ORNL
- (Small islands that are definitely not in Europe) Tursa/Edinburgh

Large effort by many people, notably C. Lehner, C. Jung, C. Kelly, A. Portelli



## Performance

#### Perlmutter(Cray/Nvidia A100), Crusher (Cray/AMD MI250), Summit (IBM/Nvidia V100)



#### Expect Aurora will have

- Substantially more single node performance than Crusher
- Same network technology as Crusher
- $\Rightarrow$  Performance loss to communication will be a larger hit !!!



## Nvidia GPU performance

Provably unimprovable:

Dslash kernel: 39% FMA pipe, 80% L2, 78% memory; hard to improve by much





## Edinburgh Tursa / Juelich Booster / Cineca Leonardo

10TF/s per node including communication



- Atos nodes, 4 × A100 with 4× Mellanox HDR
- Gives 185 GB/s bidirectional interconnect bandwidth
- Can 'prove' code is optimal: saturates memory bandwidth on every one of 22 kernels in sequence



### ORNL: Frontier/Crusher. CSC: LUMI



- 4x Slingshot 200 Gbit/s per node
- Mapping GPU's 0,1,2,3,7,6,5,4
- Then MPI ranks {000,001,010,011,100,101,110,111} are the vertices of a 2<sup>3</sup> cube in network



# Frontier/Crusher (ORNL), LUMI (CSC)

- 7.4TF/s per node including communication
- Cray/AMD 4x MI250 nodes, 4x Slingshot 11

|               |       |            |                           |                  |                 |              |                 |               |           |        | Ę.   | L |
|---------------|-------|------------|---------------------------|------------------|-----------------|--------------|-----------------|---------------|-----------|--------|------|---|
|               | 14    | 234        | 114 114                   |                  | 1444            | 11.14        |                 | 25.64         |           |        |      |   |
|               |       | 1000       |                           |                  |                 |              |                 |               |           |        | Node | 8 |
| 152302L2 + +  | 5.8.8 |            | 400.7 va 1400.7 va 141 ma | ni 2 mg<br>Tar w |                 |              |                 |               |           | +5.2 # |      |   |
| ▲ 0P006       | -     |            |                           |                  |                 |              |                 |               |           |        |      |   |
| Thread 3      | x 🖬 🕬 | kitlanð. 🔍 |                           |                  | 1.1             | void Grid La | no.dalophili-Si |               | sie Warn. |        |      |   |
| A CPUHPAPI2   |       |            |                           |                  |                 |              |                 |               |           |        | 4    |   |
| Twead 107961  | Diple | iotiyatro. | hipbevication.            |                  |                 |              | Nphwice         | iyachasia     |           |        | 8    |   |
| A CPUIGAARID  |       |            |                           |                  |                 |              |                 |               |           |        | 16   | - |
|               | her.  | igal pat.  | has signal.               |                  |                 |              | his, signal,    | ult_stacquite |           |        | 10   |   |
| Twead 107861  |       |            |                           |                  |                 |              |                 |               |           |        | 32   |   |
| Thread 108183 |       |            |                           | has,signe        | Leak, acacquire |              |                 |               |           |        | 64   | - |
| A 00PY1       |       |            |                           |                  |                 |              |                 |               |           |        | 100  | _ |
| Twait         |       |            |                           |                  |                 |              |                 |               |           |        | 128  |   |



- After various fixes: constant performance
- 'tricks' to get MPI using DMA hardware between GPUs
- Infinity link intranode is relatively slow compared to NVlink
- Network limit is same as Tursa and performance withon 30%
- No 'proof' it is optimal yet: might hope for further gains



## Algorithms for the future?

- Ratio of single GPU code to multinode code is 2:1 (Crusher)
- Ratio of single GPU code to multinode code is 7:1 (Perlmutter phase 1)
- Ratio on \$500M Aurora may be similar to Perlmutter (but same network as Crusher)
- $\blacksquare \ {\sf Need new algorithms} \Rightarrow {\sf SciDAC-5}$



SciDAC-5 project



#### Hybrid Monte Carlo

Auxiliary Gaussian integral over conjugate momentum field  $\int d\pi e^{-\frac{\pi^2}{2}}$ Lives in Lie algbra; serves only to move U round the group Manifold

$$\int d\pi \int d\phi \int dU \quad e^{-\frac{\pi^2}{2}} e^{-S_G[U]} e^{-\phi^*(M^{\dagger}M)^{-1}\phi}$$

- Outer Metropolis Monte Carlo algorithm
  - Draw momenta
  - Draw pseudofermion as gaussian  $\eta = M^{-1}\phi$
  - Metropolis acceptance step
- Metropolis proposal includes inner molecular dynamics at constant Hamiltonian:

$$H = \frac{\pi^2}{2} + S_G[U] + \phi^* (M^{\dagger} M)^{-1} \phi$$

• Drive as  $\dot{U} = i\pi U$  derive HMC EOM from:

$$\dot{H} = 0 = \pi \left[ \dot{\pi} + iU \cdot \nabla_U S_{TA} \right]$$

Finite timestep performed in Lie algebra, keeps U on group manifold:

$$U' = e^{i\pi dt} U$$

- Force terms  $\nabla_U S$  via product and chain rule; rules of matrix differentiation.
- Must invert M<sup>†</sup>M at each timestep of evolution in MD force

 $\delta(M^{\dagger}M)^{-1} = -(M^{\dagger}M)^{-1}[(\delta M^{\dagger})M + M(\delta M)](M^{\dagger}M)^{-1}$ 

# SciDAC-5 project

- "Multiscale acceleration: Powering future discoveries in High Energy Physics"
- 5 year project 2022/10 to 2027/10
- USQCD:
  - 3 Labs: ANL, BNL (lead), FNAL
  - 8 Universites: Columbia, BU, MSU, Illinois, UIUC, Utah
- SciDAC Fastmath :
  - LBNL, MIT, SUNY Buffalo
- Algorithmic research collab. between USQCD HET and SciDAC institutes (applied math/computer science)
- Funded by both DOE/HEP and DOE/ASCR
- 3 work packages:
  - WP1: Multigrid for Domain Wall and Staggered Fermions
  - WP2: Transformational sampling algorithms
  - WP3: Large domain decomposed HMC: minimise communication



## SciDAC-5 personnel

https://scidac5-fastmath.lbl.gov/ https://petsc.org/release/



SciDAC:

- MIT Youssef Marzouk (FastMath Uncertainty Quantification)
- LBNL Mark Adams (FastMath PETSc)
- SUNY Buffalo Matt Knepley (PETSc), Joe Pusztay, Duncan Clayton USQCD:
  - ANL James Osborne, Xiaoyong Jin
  - BNL Peter Boyle, Taku Izubuchi, Chulwoo Jung, Christopher Kelly, Nobu Matsumoto
  - FNAL Andreas Kronfeld, Jim Simone
  - Boston University Rich Brower
  - Columbia Norman Christ, Yikai Huo
  - Indiana Steve Gottlieb
  - MSU Alexei Bazavov
  - UIUC Aida El-Khadra
  - Utah Carleton Detar, David Clarke

Postdoc and PhD student positions are being filled



#### Work package 1

- SciDAC: Adams, Boyle, Brower, Clayton, Gottlieb, Kelly, Knepley, Kronfeld, Pusztay
- Collaborators: Clark, Weinberg, Owen, others



## PETSc Collaboration

|                                                                                                                                                                                                                                                                                                                                                                                                                        | IPETSc IUTAO Devotes Intel User Date All Des Tuterials More -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PETSc 3.18                                                                                                                                                                                                                                                                                                                                                                                                             | Trouble librariae that use DETSe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| PTICs the holders, bounds have the Search Comparison, processed PTI and (build, build in data<br>managements and content the trade based (build and or beneform Sequences) and only proof dimension<br>markets. Examples MAR, and Girk though (COM, HIP & Gard), and and the hybrid HIP Sequence<br>and the Comparison of the HIP sequence and the HIP sequence of the hybrid HIP<br>Manuard Girlsmann, scheme theory. | LOURS SQFUL RETIS VIEW SQF 21: SX     4. etc., storage stars and squares  |  |  |  |
| A News PFTNo 2023 Areaal Meeting                                                                                                                                                                                                                                                                                                                                                                                       | - Fully a transistement operation to be a constructed on the second operation of the second operation |  |  |  |
| Registration now open for The PCTSc 2023 Annual Meeting, June 5-7 on the campus of IIT in Chicago.                                                                                                                                                                                                                                                                                                                     | parama anteriora reguerra.<br>• Edución a deguiros faitos enteres Harary<br>• Metter Egistenight, vasiable C++ Baray for Italia alarment matinada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| News: New Ecok on PETSc                                                                                                                                                                                                                                                                                                                                                                                                | <ul> <li>McION, Multipuel Operativities with PETSe.</li> <li>McION, An operatory panallel finite element literary</li> <li>MCONE: - Multipuelin Operating Standards (molecular files element humaned, built on topol IMMeth el</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| PETSo for Partial Differential Equations: Numerical Solutions in C and Python, by 5d Eurier, is available.                                                                                                                                                                                                                                                                                                             | PCTSc<br>= COVEM attact oriented finite element litrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| Book from SAMA Press     Dorgin Thirt 5. book                                                                                                                                                                                                                                                                                                                                                                          | Country Cardio Section Vision (Country Vision) The American Section (Country Vision) Country (Country Vision) Countr |  |  |  |
| Nows: New paper on PETSc community                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>PACOJA &amp; transmission has high per-formance transportential. Analysis</li> <li>RADAR The Transfer information of information highlight and frames.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| The Community is the infrastructure                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>proCCLP - A hilly parallel imaging lineary for partitioned multi-physics streadstore<br/>PyClar A massionly parallel, high order associate, hyperiodic POE solver     </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

- Widely used world class PDE solver and multigrid HPC library in "C"
- Expert applied mathematicians
- Broad range of algorithms
- Aim: expose our problems to PETSc team in a way we can work on them together
- Status:
  - Completely documented Wilson operator
  - PETSc based implementation of Wilson (Pusztay, Knepley, Clayton)
  - free field Fourier verification
  - regresses to Grid, can load NERSC configurations (PB)
  - PETSc based implementation of DWF (PB)
  - Wilson multigrid under development



## SciDAC-5 multigrid & half plane condition

Algorithmic research: I bet we'll break every non-Hermitian Krylov solver in  $\mathsf{PETSc}$ 

- Spectrum of DWF presents problems to non-Hermitian solvers
- Why? Krylov space is the span of polynomials of matrix M. Let  $|i\rangle$  be the set of right eigenvectors,  $\mathscr{P}(x) = c_n x^n$  a polynomial

There exists a contour C contained entirely within the (dense in large/infinite volume) spectrum such that

$$\oint_C \mathscr{P}^{\text{Krylov}}(z)dz = 0$$
$$\oint_C F^{\text{True}}(z)dz = \oint_C \frac{1}{z}dz = 2\pi i$$

- Thus the Krylov polynomal and true solution must differ within the domain of the spectrum
- Polynomial must differ from solution between discrete eigenvalues and low order smooth polynomial is inadequate
- Slow convergence, perhaps of order system size





#### Domain wall: where to?

- arXiv:1205.2933, Cohen, Brower: real positive (M<sup>†</sup> precondition) coarsen M<sup>†</sup>M (2hop)
- arXiv:1402.2585, PB: real indefinite (RB-NE precondition) coarsen  $M_{bc}^{\dagger}M_{pc}$  (4hop)
- arXiv:1611.06944, arXiv:2203.17119, PB, Yamaguchi: real indefinite (Γ<sub>5</sub> precondition) coarsen Γ<sub>5</sub>M (1hop)
- arXiv:2004.07732, Weinberg et al: complex positive half plane (M<sup>†</sup><sub>PV</sub> precondition), coarsen M (1 hop) and M<sup>†</sup><sub>PV</sub> (1 hop)
  - 2D U(1) arXiv:2004.07732
  - 4D SU(3) arXiv:2203.17119

Possible plan:

- Directly coarsen 2-hop matrix M<sup>†</sup><sub>PV</sub> M
- PETSc opens up all sorts of algebraic and other multigrid options
- Good ideas arising from applied math community



#### Work package 2

- SciDAC: Izubuchi, Matsumoto, Marzouk, Christ, Jung, Boyle, Brower, Osborne, X. Jin
- Collaborators: Tomiya, L. Jin



## SciDAC-5 Sampling algorithms

- Generalised Fourier acceleration of HMC
  - Generalise Riemanian Manifold HMC ECP for new momentum distributions Jung, Christ + Marzouk arXiv:2112.04556, arXiv:1710.07036
- Trivialising maps and Field Transformation-HMC (Izubuchi, Matsumoto + Marzouk)

$$\int dU e^{-S[U]} = \int dV \left| \frac{dU}{dV} \right| e^{-S[U(V)]}$$

- arXiv:2212.11387, (Nobu Matusmoto Lattice 2022), Matsumoto THIS WORKSHOP
   + Akio Tomiya, Luchang Jin, PB, Christoph Lehner, Chulwoo Jung
- Effectively Luscher's Wilson flowed HMC but with large flow timestep arXiv:1009.5877
- · Currently in Qlat (Jin) quenched Wilson flow code
- General trivialising flows. Multiple Wilson loops (Matsumoto, Izubuchi, Tomiya, Jin)
  - Migrating plaquette flow HMC to Grid (PB); add fermions Generalise Grid smear HMC to include gauge action; Will add Jacobian Link smear in multiple steps, operating on disjoint subsets of links at each step
- UV smearing function U(V) brings tunable Fourier acceleration with incomplete trivialisation



Work package 3 : DDHMC for odd flavours

- SciDAC: Bazavov, Boyle, Brower, D. Clarke, Kelly, Detar, El-Khadra, Kronfeld, Simone
- Collaborators: D. Bollweg, A. Yamaguchi



#### Domain decomposition : arXiv:2203.17119

A matrix can be UDL factorised around its lower right block as follows,

$$\begin{pmatrix} D & C \\ B & A \end{pmatrix} = \begin{pmatrix} 1 & CA^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} S_{\chi} & 0 \\ 0 & A \end{pmatrix} \begin{pmatrix} 1 & 0 \\ A^{-1}B & 1 \end{pmatrix},$$
(1)

where the Schur complement,

$$S = D - CA^{-1}B$$

- Divide space time into "black" and "white" subsets.
- Reorder vectors as black and white vectors.
- Differential operators are matrices connecting black to black, white to white and cross terms



Schwarz-preconditioned HMC algorithm for two-flavour lattice QCD

Martin Lüscher

CERN, Physics Department, TH Division CH-1211 Geneva 23, Switzerland



### DDHMC refresher

Fermion operator may be factored:

$$\begin{pmatrix} D_{\Omega} & D_{\partial} \\ D_{\overline{\partial}} & D_{\overline{\Omega}} \end{pmatrix} = \begin{pmatrix} 1 & D_{\partial} D_{\overline{\Omega}}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} D_{\Omega} - D_{\partial} D_{\overline{\Omega}}^{-1} D_{\overline{\partial}} & 0 \\ 0 & D_{\overline{\Omega}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ D_{\overline{\Omega}}^{-1} D_{\overline{\partial}} & 1 \end{pmatrix}.$$
(2)

The factors L, M, and U are obvious and the determinant is:

$$\det D = \det D_{\Omega} \det D_{\bar{\Omega}} \det \left\{ 1 - D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}} \right\},\,$$

Luscher's approach:

- small domains 4<sup>4</sup> to 6<sup>4</sup>
- HMC MD integrate gauge action and local determinants for each domain without communication
- Fits within L2 cache of a CPU core
- Small cell provides IR regulator for Dirichlet Dirac solves
- Exterior boundary gauge links are frozen (cross domain and in surface plane)



#### Boundary determinant

Handling the Schur complement "boundary" determinant requires care

$$\chi = 1 - D_{\Omega}^{-1} D_{\partial} D_{\overline{\Omega}}^{-1} D_{\overline{\partial}}$$

Luscher restricted to exterior boundary of Ω

$$R = \mathbb{P}_{\bar{\partial}} - \mathbb{P}_{\bar{\partial}} D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}}$$

because in the right basis χ takes the form

$$\chi = \left(\begin{array}{cc} 1-X & 0\\ Y & 1\end{array}\right)$$

so det  $\chi = \det R = \det(1 - X)$ 

■ For pseudofermion action  $\phi^{\dagger}_{\bar{\partial}}(RR^{\dagger})^{-1}\phi_{\bar{\partial}}$ , 3D pseudofermion,

$$R^{-1} = \hat{\mathbb{P}}_{\bar{\partial}} - \hat{\mathbb{P}}_{\bar{\partial}} D^{-1} \hat{D}_{\bar{\partial}}$$

- $\bullet \ \delta R^{-1} = \mathbb{P}_{\bar{\partial}} D^{-1} \delta D D^{-1} D_{\bar{\partial}}.$
- Pauli-Villars (or Hasenbusch) requires

$$\phi_{\bar{\partial}}^{\dagger} P^{\dagger} R^{-\dagger} R^{-1} P \phi_{\bar{\partial}}.$$

and  $\delta R = \mathbb{P}_{\bar{\partial}} D_{\Omega}^{-1} (\delta D_{\Omega}) D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} D_{\bar{\partial}} + \mathbb{P}_{\bar{\partial}} D_{\Omega}^{-1} D_{\partial} D_{\bar{\Omega}}^{-1} (\delta D_{\bar{\Omega}}) D_{\bar{\Omega}}^{-1} D_{\bar{\partial}}.$ 

Doesn't work for odd flavours (nested solve needed)



### What not to like about Lucher's approach

- Not friendly to odd flavours
- Luscher and collaborators don't use it spikes in  $\delta H$ , too many inactive links
- Structured as lots of serial small volume evolutions: good for CPUs
- Need a GPU friendly approach: seek gain of communication avoidance, but not SMALL cell
- Make it as friendly as possible to GPUs: domain as big as a multi-GPU exascale node
  - · Expect to lose IR bound on subdomain solves
  - Expect to gain fidelity and *large force suppression* with bigger inactive zones/more efficiency
  - Perturbative massless zero momentum two point function  $\propto t^{-3}$



#### Two flavour determinant

 $\tilde{D}$  is Dirichlet operator Structure pseudofermion factors as:

$$\det P(D_l^{\dagger}D_l)^{-1}P^{\dagger} = \det \tilde{D}_l(D_l^{\dagger}D_l)^{-1}\tilde{D}^{\dagger}$$
$$\det \tilde{P}(\tilde{D}_l^{\dagger}\tilde{D}_l)^{-1}\tilde{P}^{\dagger}$$
$$\det P(\tilde{P}^{\dagger}\tilde{P})^{-1}P^{\dagger}$$

insert multiple Dirichlet BC Hasenbuch intermediate mass preconditioning.

$$\det\left\{1-D_{\Omega}^{-1}D_{\partial}D_{\bar{\Omega}}^{-1}D_{\bar{\partial}}\right\}=\frac{\det D}{\det D_{\Omega}\det D_{\bar{\Omega}}},$$

2 flavour pseudofermion action:

$$S_{2f} = \phi^{\dagger} D_{\text{dirichlet}} (D^{\dagger} D)^{-1} D^{\dagger}_{\text{dirichlet}} \phi$$

Looks like a "Hasenbusch" operator ratio, but rather than mass preconditioning operators are identical everywhere except the boundary between domains.

Pseudofermion fills entire four volume, so different stochastic estimate of same determinant.



### Force estimation

 $D_{\text{dirichlet}} = D + \Delta D$ 

$$\begin{array}{rcl} S_{2f} & = & \phi^{\dagger}\phi \\ & + & \phi^{\dagger}\Delta D^{\dagger}D^{-1}\phi \\ & + & \phi^{\dagger}D^{-\dagger}\Delta D\phi \\ & + & \phi^{\dagger}\Delta D(D^{\dagger}D)^{-1}\Delta D\phi \end{array}$$

- Introduces surface to bulk pseudofermion coupling terms
- To be expect as "Y" term in

$$\chi = \left(\begin{array}{cc} 1-X & 0 \\ Y & 1 \end{array}\right)$$



### Fractional powers: DD-RHMC

- What about the strange quark?
- Must be able to take fractional powers of determinant
- Alternate approach to boundary determinant allows to avoid nested inversion in Schur complement

RHMC boundary pseudofermion:

$$S_{1f}^{B} = \phi_{1}^{\dagger} (D_{\text{dirichlet}}^{\dagger} D_{\text{dirichlet}})^{\frac{1}{4}} (D^{\dagger} D)^{-\frac{1}{2}} (D_{\text{dirichlet}}^{\dagger} D_{\text{dirichlet}})^{\frac{1}{4}} \phi_{1}$$

RHMC local 1 flavor determinant ratio

$$S_{1f}^{L} = \phi_{2}^{\dagger} (P_{\text{dirichlet}} P_{\text{dirichlet}})^{\frac{1}{4}} (D_{\text{dirichlet}}^{\dagger} D_{\text{dirichlet}})^{-\frac{1}{2}} (P_{\text{dirichlet}} P_{\text{dirichlet}})^{\frac{1}{4}} \phi_{2}$$

RHMC boundary Pauli Villars

$$S_{1f}^{BP} \quad = \quad \phi_3^{\dagger} (P^{\dagger} P)^{\frac{1}{4}} (P_{\text{dirichlet}} P_{\text{dirichlet}})^{-\frac{1}{2}} (P^{\dagger} P)^{\frac{1}{4}} \phi_3$$



### $16^3 imes 48$ , $\beta = 2.13$ , $m_{ud} = 0.01$ two flavour run



- 2 flavour 4D pseudofermion has larger force than 2f 3D pseudofermion
- 1+1 flavour 4D pseudofermion has smaller force than 2f 3D pseudofermion
- Odd flavour domain decomposition is now possible

Worth pursuing! arXiv:2203.17119



# Large volume run $\beta = 2.25$ , $48^3 \times 96$ , $m_{ud} = 0.00078$

- Close to physical, but  $L_s = 12$  not  $L_s = 24$
- After tuning, HMC trajectory on 16 Crusher nodes runs in 90mins
- For comparison: Summit 128 nodes takes 1h
- Seek to tune DDHMC to match or exceed.
- Crusher has good communications: Expect any gain will be strictly limited



## Nice surprise !

- Subdomain solves are MUCH faster than full solves
- Lower iteration count MULTIPLIES communications gain
- Applies to all intermediate Hasenbusch factors in my DDHMC scheme

| Cell | Iterations  | Boundary | Conds        |
|------|-------------|----------|--------------|
| pppa | 48x48x48x96 | 12351    | antiperiodic |
| pppd | 48x48x48x96 | 11864    | open time    |
| dddd | 48x48x48x96 | 7349     | open 4 dirs  |
| pppd | 48x48x48x48 | 10015    | dirichlet    |
| pppd | 48x48x48x24 | 7416     | dirichlet    |
| ppdd | 48x48x24x24 | 5150     | dirichlet    |
| pddd | 48x24x24x24 | 4324     | dirichlet    |
| dddd | 24x24x24x24 | 3692     | dirichlet    |



#### Why so much? Look at difference in low mode eigenspectrum



- $\blacksquare$  Lowest lying eigenvectors of the (block diagonal) Dirichlet operator on four 48 $^3\times$ 24 cells in a 48 $^3\times$ 96 lattice.
- Modes are projected into  $1 \pm \gamma_t$  parity
- components to look for edge effects at domain boundaries.



### Why so much?



- Dirichlet BC on modes forces them to zero at boundary
- This forces (covariant) curvature and raises eigenvalue
- Enough to reduce solver iterations 4x
- Doesn't really support cute theories about cutting up instantons, global vs local topology (!)



## Why so much?



- Dirichlet BC on modes forces them to zero at boundary
- This forces (covariant) curvature and raises eigenvalue
- Enough to reduce solver iterations 4x
- Doesn't really support cute theories about cutting up instantons, global vs local topology (!)



# $48^3$ forces



- Pattern of larger force with 2f boundary repeats
- Continue with rational 1+1 f boundary
- Introducing partial dirichlet BCs with further force reduction
  - · Surface physical fields remain connected, 5d bulk is disconnected



## 48<sup>3</sup> tuning status - Prelimibary Work In Progress

Work in progress:

- Do NOT yet have a wall clock gain or parity.
- Started to conserve Hamiltonian for 1f + 1f boundary determinant
- slightly slower time O(7000s) vs O(5500s)
  - I am recalculating an expensive Hamiltonian redundantly
  - Running Rational approximation in *double* precision and comparing to 2x faster mixed precision HMC
- Working on mixed precision multishift CG
- Working on tuning residuals pole by pole in rational approximation
- Working on right integrator timestep heirarchy
- Plan to look at multishift-multi-RHS (Keegan+De Forcrand arXiv:1808.01829)
- Two possible 2x speed ups, mixed precision more certain

Preliminary Sketch - this is NOT YET an equal acceptance comparison

| algorithm | $D_{\rm full}$ | D <sub>dirichlet</sub> |
|-----------|----------------|------------------------|
| HMC       | 421648         | 0                      |
| DDHMC     | 161708         | 357316                 |



## Summary

- Grid gives good cross platform single source performance
- CPU/GPU unified programming that is well optimised for both
- Engineering limits like bandwidths are hit
- Multiscale physics AND computer engineering BOTH dictate new algorithm research
- $\Rightarrow$  SciDAC-5 research directions
  - Multigrid for DWF (and staggered) are intrinsically harder than Wilson
  - Advanced multiscale aware gauge sampling
  - · Domain decompostion to improve computational locality

