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Today’s talk

® What is the sign problem?
- Difficulty for complex action
- Why the naive method (reweighting) fails

® Overview of various approaches

® Argue that
Worldvolume Hybrid Monte Carlo method
IS @ promising method
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Introduction



Basics of Monte Carlo methods

B What we want: expectation values of observables

(x = (x') e R" : dynamical variable (N: DOF) ei.g. scalar field
S(x): action X <> ¢(t,X)
1O(X): observable S(x) <> S[¢] = jdtdsx[%(atgb)z n }
N .
dx =] ] dx' dx = [Tdx' < [dg] =] dg(t,x)
L I=1 i t,X

e—S(x)
(0) = [dx p()OX) | p(x)= oo

When N > 1, numerical multiple integrals are unrealistic
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What if the action is complex-valued?

B complex action S(x) =ReS(x)+ilmS(x) e C (Im S(x) =0)

~S(x)
p(X) cannot be regarded as a probability distribution {p(x) __°© }

dxe>™
H Examples I
- finite-density QCD _ Q:baryon number
—ﬁ)(/H— Q) 1: chemical potential V=7, (1=1,2,3,0)
Z =tre H .n}=26,,1
1/292)[trF2, +[wD(A,: :
- (oA, Jdydiz] o2 TR IYPAW (D(a 1) =5, 4 mt ey,
(1/2g2)[trF2,
= [[dA,]e JirF [DetD(Aﬂ;u)]

eC ( [DetD(A,; )] =DetD(A,;~u') )
- Quantum Monte Carlo (QMQ)

strongly correlated electron systems, tiTe
frustrated spin systems, ...
y ¥(9)
- real-time dynamics of QM/QFT i
(¥, U (G,1) |, = [[da(®)] W3 (a(t) ¥, (att) {0 TU“Z'U
eC
(u () =T exp[—i [“dtH (t)D ¥,
i t=t, [3/36]
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Sign problem

m reweighting method: simplest prescription for the complex action

oS _ g ReS() e—iImS(x)j

. /7 \

used forva wt tree;fted as part of obs
jdx e—S(X) O(X) Idx e—ReS(x) e—i Im SI (X) O(X)

<O(X)> — J'dx e_S(X) - J‘dx e_ReS(x) e—i Im S, (X)
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Sign problem

m reweighting method: simplest prescription for the complex action

e—S(x) _ e—ReS(x) e—iImS(x)J

. /7 \

used forva wit tree;fted as obs
jdx o= S(x) O(x) IdX aReS(X) o=11m S, (x) O(x) /J‘dx o—Res(x)
J’dx a=S(¥) = J.dx e—ResS(x) e—i Im S, (x) / J‘dx a~ReS(x)

LEICTTI, dx e eS0) £ (x)
(e IS0y t (T (D rewt = j Taxe 7500

(O(x)) =

highly oscillatory =
forN >1

rewt

e~O(N)
= 5 ON) (=0@)

But, in numerical calc, the numer and denom are estimated with sample avgs

N +o@rN .
<O(X)> ~ e ( conf) N : DOF j

o OMN) iO(l/\/H) N, : sample size
571 SIGN PROBLEM!

. small error 01/ N_ ) < e °™ < | N

Need an exponentially large sample  [4/3¢)

2> €

conf =




_B
S(x) = >
O(x) = X

= (X =

(x-i)’ =ReS()+i ImS(x) [Res()=2(¢-1)| [£>>1
large £ mimics large DOF

<e—|ImS(x) X2

>rewt _

ImS(x) =—Xx

(ﬂ—l _1) o /2

<e—iImS(x)>

numerically =

rewt

=) Necessary sample size:

1Ny SOE7?) &

-p

/12

e
B -1)e " +O(L/ N )
(87 -1)

e—ﬁ/Z T O(l/ \/ Nconf)

N

conf ~v

5 X

[Essence] /e
| | )N |
L*""’// J‘E . \':T’""“J

—ReS(x) e—ﬂx2/2

e—i Im S(x) o eiﬂx

with N =1

In the limit # — o (-.1/ f <1/ ),

the integration becomes highly oscillatory
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Various approaches
B method 1 : no use of reweighting

¥ complex Langevin method [Parisi 1983, Klauder 1983]

(may show a wrong convergence problem) (< wrong results
w/ small stat errors

B method 2 : deformation of the integration surface

V¥ Lefschetz thimble method [Witten 2010]
[Cristoforetti et al. 2012, Fujii et al. 2013]

generalized thimble method [Alexandru et al. 2015]

tempered Lefschetz thimble method [MF-Umeda 2017, Alexandru et al. 2017]

Worldvolume Hybrid Monte Carlo method [MF-Matsumoto 2020,
Fujisawa et al. 2021, ...]

V¥ path optimization method [Mori-Kashiwa-Ohnishi 2017,
Alexandru et al. 2018]

m method 3 : no use of MC in the first place
V¥ tensor network (e.g. TRG) [Levin-Nave 2007, Shimizu-Kuramashi 2014,

- good at calculating the free energy Kadoh et al. 2020, ...]
(but not so much for correl fcns) Akiyama-san'’s talk
- direct treatement of Grassmann variables [6/36]
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Basic idea

—S(x) N _ m2N
e - C" =R
S C N Iy A IO(Z)
dxe=SX) XeR
RN : N 2N ot :
RN —> z=X+1yeC" =R Z=X+iy
> X > X
does not define a prob distribution
a prob distribution on RN incN =r2N
: .. i
m Algorithm [Parisi 1983, Klauder 1983] N oz1%) D7 p(2)
{z _y = 7, = Z, (X, V) Zi (X v)
t=0 0 - - _ 1(/_
v, : Gaussian white noise v,
_ > X
(), =26(t-1') ) .

0
The following holds under a certain condition: ( pe(z]%)= (6™ (2- (X)), )

(+) LRN dxe SMO(x)

Jd*2p(2)0(2) = e (=(0CD)
Then, we have N]inf
(O(x)) = O(Zr+k)

Neont k=1 17/36]



Wrong convergence problem

Condition for (*) to hold : [Aarts-James-Seiler-Stamatescu 1101.3270] A atix) ' 37 o)

,Ot(z | Xo): {

(t: large)

Explicit form [Nagata-Nishimura-Shimasaki 1606.07627]
Histogram of |0S (x+1iy)| decreases

rapidly (at least exponentially)

_ i )
Example : e 5™ = (x+ia)*e 2
10" . . . ; :
[ =36 s R
10° | oy —
0=3.9 —-—--
0=42 ———
0% F 3
= : o a<3.7 1
a0 .. powerlike fall-off ]
o° F a>38 i
0°r  rapid fall-off |}
10-?‘ 1 1 ] ! !

2 4 6 8
u=[S'(z)| (z=x+iy)
p(u): normalized histogram

1

o N B~ OO 0 O

Is not spread much in the direction |Imz|—> o

does not have large values near zeros of e >
Otherwise, it gives wrong estimates with small stat errors

[Nagata-Nishimura-Shimasaki 1606.07627]

I

J | | |

1
exact
CLM —e—i

a <3.7 a
e wrong convergence -
e
e
o >3.8
good agreement’
1 | ] 1 | i
1 2 3 4 5 7

6
o [8/36]
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Basic idea of the thimble method (1/2)

m Complexification of dyn variable: x=(x')eR" = z=(z' =x' +iy')eC"

assumption (satisfied for most cases) (S(x) :action, O(X) : observable)

e 5@ 3@ O(z) : entire fcns over CN (can have zeros) \

Cauchy’s theorem /y}

- —-——

‘—
’f

Integrals do not change under continuous deformation
of integration surface : =, =R" — X (<= C")
(boundary at | x|— « kept fixed)

oy A XETOW [ aze o
(O = j dxeS® jdz e5(2)
% >

severe sign problem |sign problem will be significantly reduced
if ImS(z) is almost constant on X

[9/36]



Basic idea of the thimble method (2/2)

W Prescription for deformation

— JC (anti-thimble)
4

Q\ . (Lefschetz thimble)

ImS(z) : constant

anti-holomorphic gradient flow

t t Zt(X Zt (deformed surface)
N
property X ZO =K
. | ReS(z)] =0
S(z)] =8S(z) 2 =]0S(z)[ >0 |
[S(z)] )2 =[08(z) [ImS(z,)] =0

ReS(z;) : always increases except at crit pt £ (¢ : crit pt
ImS(z;) : always constant & 35(5)=0

Z 2% , 7 (Lefschetz thimble)= union of orbits starting from ¢
ImS(z) : constant on 7 (=ImS(¢))

Sign problem is expected to disappear on Z; at a sufficiently large t
[10/36]




Digression : thimble = YUBINUKI (3565 )

canonical form around a crit pt =0 [0S(0) =0] g~ReS(®)

A IC: anti-thimble

B complexdim 1 (N =1) (steepest ascent)

S(Z):S(O)'F%ZZ +-- (1>0)

J: thimble

(steepest descent)
X

_ (%2 _\2
e ReS(z2) o @ A(xc=y<)/2

W complexdim N
N
S(z) :S(O)+Z%zi2 +-o (A4 >0)
i=1

S A (R-yR)i2

—ReS(2)

€ oce o—Res(2)
A
—ReS(2)
€x
XN YN
IC
J orthogonal
incN =r2N
/ [11/36]



Digression : thimble = YUBINUKI (3565 )

canonical form around a crit pt =0 [0S(0) =0] g~ReS(®)

A IC: anti-thimble

(steepest ascent)

y

J: thimble

(steepest descent)
X

W complexdim 1 (N =1)
S(z) = S(O)‘F%ZZ +-- (1>0)

:>e—ReS(z) oce—/l(xz—yz)lz :>

W complexdim N
N
S(z) :S(O)WLZ%zi2 +-o (4 >0)
i=1

N
> A -yE)/2
“ReS -
I:> e RS g I _ReS(2)
€A

> Y,
[11/36]




How does the sign problem disappear?

e Integration on the original surface =, =R" (flow time t =0)

'm0 0N L o1/ /N .
(Ox)) = —iim S(x) o ~ e—O(N) = [ ) (E .D'OsFam le sizej
<e >20(reWt) e iO(l/ Nconf) conf * p
need ahuge size of sample : N__ . =e°™) sign problem
flow
e Integration on a deformed surface Z; (flow time t) e,
| -at
<O(X»_<e'9(z)0(2)>zt et oM o/ N ) Lk
(s, ¢ 0N o/ /N_,) 5
i0(z) _ —ilmS(z) 04Z
[e =e @] [eﬂbt =0O(N) < t=0(log N)] . 5,
- O@)£O@@//Ngp) A (typical) singular value
= O(l) iO(ll M) of Hessian 8,813(4)

Sign problem disappears at flow timet =0(logN)

[12/36]




Gradient flow: [S(2)=(5/2)(z-i)* = $'(2) = Bz 1) o

2, =5'(z,) = B(Z +i) with z_, =x # T,
\\ - }/— Zt

= () =xe" +il-e”) ..|dz|=e"dx —_ A :

exponential growth
/4 of coefficient \ \ ' =13
e I .

1
ReS(Zt(x)):E,Bezf“(X?_e \ // t
IMS(z, (X)) = —fx .. @0 _ gifx - >
:> < ¢ (Z)> ~ J‘Ztl dz | e_Re S(2) f (Z) ) J‘dx e_(ﬂlz) e2B1y2 f (Zt(x))
B -[Etl dz|eRes® Idx o~ (12)e2P 2

No small numbers appear

: . 1 1 1
if we take a larget (=T) st e’ <« — o ——e T« =
| JB JB p
() = (ele(z)22>zT {\ po H | H
<ei9(Z)>ZT -
e_(’B/Z)e_ZﬂT (ﬂ_l —1) o) _13 b2 Jo.1 X 0.1 0 '3 X
T e o
NB. Logarithmic increase is enough: v U \/ U ' ui U U U
T ~O(log ) (= O(log N)) B

[13/36]



Appendix: Anti-holomorp

Behaviors around special points

(1) around a critical point £ =& +in:

S(z>:§(z—:)2+--- (1>0)
2, =S"(z) = A7 - <)

{Xt =&+eM(x, &)
Vi =17 +e (Y, - 1)

4
(2) around a zero z, of e >(?): J

e =(2-2Y 1(2) (yeZ.,)
S(z)=-yIn(z-2,)+--
2,=S"(z2)=—y(z,-Z.)"

{mz* P=|z,—z. P -2yt

Z, —Z,
L ~const
Z, - Z,

(converges to z, in finite flow time

hic gradient flow

: critical point (85 (¢) =0)

={z|z>¢ (t>—0)}

S
R\@

. Lefschetz thimble associated with ¢

|z
\\\:k\\\ji/iflz?‘/
> <
)//‘\\

[14/36]
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_ relaxation of |:|'> Sign problem resolved?
large flow time t :> oscillatory integral ) NO!

[15/36]



Ergodicity problem in thimble methods

relaxation of

, , Sign problem resolved?
oscillatory integral

NO!
Actually, there comes out another problem at large t : Ergodicity problem

—LQL oS e—ﬂXZ/Z(X_i)V (,3 >1 ye Z>o) finite-density QCD : 7
e SIAl — g SwilAl et K[A]

large flow time t

IyA zeroofe”
o2 critpts: .

%\[ .2 thimbles : 7,
AP S

, *lzeroofe®®:z =

|| ‘ r\l )
move of config I

zeroatz, =1 < ReS(z)=+w atz, =i
& [oo potential barrier on 2 | < configs cannot move

— —
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relaxation of

, , Sign problem resolved?
oscillatory integral

NO!
Actually, there comes out another problem at large t : Ergodicity problem

—LQL oS e—ﬂXZ/Z(X_i)V (,3 >1 ye Z>o) finite-density QCD : 7
e SIAl — g SwilAl et K[A]

large flow time t

IyA zeroofe”
o2 critpts: .

%\[ .2 thimbles : 7,
AP S

, *lzeroofe®®:z =

|| ‘ r\l )
move of config I
zero atz, =1 < ReS(z)=+watz, =i

& [oo potential barrier on 2 | < configs cannot move

[Marinari-Parisi 1992]
— [Swendsen-Wang 1986, Geyer 1991—
Hukushima-Nemoto 1996]

solution :| Implement the tempering to the thimble method
[MF-Umeda 2017] using the flow time as a temp param [15/3¢]




ldea of tempering

Suppose that the action S(x; #) gives an ergodicity problem
which disappears at a different value of g (say £,)

" Example : S(x;8) = B(x* —1)? with B>1

|

[Marinari-Parisi 1992]

B(x*-1)? (B>1) By (x> =1 (B, <)

O
KN

> X

transition is difficult
_ due to the high potl barrier

Extend the config space by inserting
multiple replicas between g (= f,) and g,

Easy transitions through detours
(Extended config space has AdS geometry

[MF-Matsumoto-Umeda 2018]) By (<]

[parallelization] "parallel tempering” or “replica exchange Monte Carlo”
[Swendsen-Wang 1986, Geyer 1991, Hukushima-Nemoto 1996]

> X

transition is easy

\ A
Ba=5(>0) ,(//‘

Iz

[16/36]



Tempered Lefschetz thimble method

[Fukuma-Umeda 1703.00861]
BTLT method

(1) Introducereplicasinbetween theinitialinteg surface 2, = RN

and the target deformed surface X; as {zto:o' Tt Zgs e By, }

(2) Setup a Markov chain for the extended config space {(t,, x)}
(3) After equilibration, estimate observables with a subsample on X

p

Sign and ergodicity problems are solved simultaneously !
[17/36]
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Hubbard model (1/4)

B Hubbard model toy model for electrons in a solid [Hubbard 1963]

+
X,0!

o C

e Hamiltonian

H __KZ ZCXU y,o 'UZ( ,¢)+U;nx,Tnx¢

n

U (>0) : on-site repulsive potential

C. o - Creation/annihilation of an electron (site X, spin a(:T,i))

(Xy) o

=c' ¢

X,o X,0 “X,0

x(>0) : hopping parameter
4 : chemical potential

(N : # of sites)

e Quantum Monte Carlo (discretized imaginary time : f = N_¢)

Trotter decomposition + bosonization (HS transformation)
/Zﬂ’ﬂ = tre AH )
zJ’[d(é]e_s[%’x] zﬂl\l_T[Hdgbg’X e 2%, %’deetMa[qﬁ] detM,[¢]

+iVeU
/[18/36]




Hubbard model (2/4)

[MF-Matsumoto-Umeda 1906.04243]

scattered plot of flowed configs at T =0.5 (Bu =5)

0.5

0.4}

0.3}
0.2}

0.1}

w/o temp
- Imz
0°0:""""'---'.--..Rez.i
—-1.0 0.0 0.5 1.0
stuck to a small # of thimbles

0.5

(projected on a plane Z = (1/ N)Zzi)
i

03 \
0.2}

0.1}

00

‘Imz
0.4}

Rez -

-1.0 -0.5 0.0 0.5 1.0

distributed widely
over many thimbles
[19/36]



[NT=5,N3=2><2} <n>=<i
fr=3 pU=13 N

(n)_
1.0

0.8

0.6

0.4

0.2}

Hubbard model (3/4)

[MF-Matsumoto-Umeda 1906.04243]

s X

S0 o0,

maximal flow time
1 L} I 1 1

+ W/ tempering (T >|0)
x wj/o tempering (T >0) .
+ reweighting (T =0)
-- exact value

deviate from exact values
due to ergodicity problem
(but with very small errors) ,

w/o temp

X
’

oof-+¢-1]

Xa
p

1

#w/ temp

-

[ 7

agree with exact values
(with small errors)

0

10

reweighting

large errors
due to sign problem

[20/36]



Hubbard model (4/4)

[MF-Matsumoto-Umeda 1906.04243]
average phase factor

id
Chaelea)ss
i6(2) (O(x)) = (0@
‘(G >ZT T

ot
[ . + w/tempering (T>0) 1

0.8 w/o tempering (T>0) }
: + reweighting (T=0) _

0.6 : i
[ . ]

0_4'_ o . x ]
: § ) :
I | r 4

02 t R
_ % i 33 ¥ B X 3 &

0.0F * . * + + + & * 4 3 8 *F
0 5 10 15 [u

When only a single (or very few) thimble is sampled by mistake,
the average phase factor can take a larger value

(due to the lack of cancellations among different thimbles)
[21/36]
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Pros and cons of the original TLT method

B TLT method [MF-Umeda 2017]

Introduce replicasinbetweenX, and Z; : {Ztozo, Tt Zpyr oo Dy, }

BN

Pros: can be applied to any systems
once formulated by path integrals with continuous variables

Cons : large comput cost at large DOF

- necessary # of replicas «c O(N°™?)
- need to calculate Jacobian J, (x) = 6z, (X) / &x o«c O(N®)
everytime we exchange configs between adjacent replicas [22/36]



Worldvolume HMC (1/2)

[MF-Matsumoto 2012.08468]
m Worldvolume Hybrid Monte Carlo (WV-HMCQ)

HMC on a continuous accumulation of integ surfaces, R = U 24
1y

0<t<T
“"worldvolume”

R : orbit of integration surface
inthe "target space" C" =R*"

orbit of particle — worldline

/ orbitof string — worldsurface

orbit of surface — worldvolume

V\ > X (membrane)

Pros : can be applied to any systems
once formulated by path integrals with continuous variables

@ major reduction of comput cost at large DOF
- No need to introduce replicas explicitly
-No need to calculate Jacobian J; (x) = 0z, (x) / 0x inMD process

- Configs canmove largely due to the use of HMC 23/36]



Worldvolume HMC (2/2)

. [MF-Matsumoto 2012.08468]
B mechanism

_[ dx e > O(x) j dz, e O(z,) t-independent
29 _ %

(O(x)) = =
J‘ dx e > j dz, e > t-independent

T B - .
) Jo dte W(t)J‘Zt dz, 65 O(z,) (W (t) : arbitrary fcn)

dete‘W(t)j dz, e >
0 gL

) jR dtdz, e Ve O(z,)

chosen s.t. the appearance prob
at different t are almost the same

< path integral over the worldvolume R

ICN
Statistical analysis method
for the WV-TLTM is established in
g P [MF-Matsumoto-Namekawa 2107.06858]

. T

> X
4\ ‘ /b \z - RN
0~ [24/36]

_[ dtdz, e Wg=5(2)
o ataz; e




Two pictures in WV-HMC

[MF-Matsumoto 2012.08468]

A t=T IQ

(1) Target-space picture
[MF-Matsumoto 2012.08468]

sample: {z,7',2",...}

(2) Parameter-space picture
[MF-Matsumoto 2012.08468]

[Fujisawa et al. 2112.10519]

sample: {(t, x),(t",x"), (", x"), ...}

At first sight, (2) may seem simpler,
but actually (1) is faster and more solid as an algorithm

We employ (1) target-space picture

[25/36]



Computational cost of WV-HMC

7 — (Zi) eC" (N ocV : DOF) [MF-Matsumoto 2012.08468]
. MF-Matsumoto-Namekawa, Lattice2022
Configuration flow Z; =0;S(z) = O(N) [ ! ]

Vector flow V; =6;0;S(z)v; = O(N?) [when ;0;S(z) is dense] 7V
— O(N) [When 0,0;S(z) is sparse}
( local fiel fl
RATTLE [ 2'=z2+Asz—As?oV(z)—4 - (localfield case) "
7., =(2' - 2) 1 As (V(z) =ReS(z) +W (1(2))) < u

N

7%' =1, —AsoV (Z')

i '\ \@
~A ’ S

cf) RATTLE on a single thimble 7 =X_ [Fujii et al. 2013] e A
RATTLE on Z; [Alexandru@Lattice2019, MF-Matsumoto- Umeda 2019]

AeN,R is determined st. 2’ e R

For given z = z,(x) and ~,

findheR, ueR", 1¢ N, R

s.t. z(X)+Asz—As* OV (z) - A=z, (x+U)
This can be solved by Newton's method

with BiCGStab for linear inversion
(which requires only config/vector flows) = O(N)

Comput cost at each MD step is expected to be O(N)
for local field theory (with the absence of fermion determinant) [26/36]




Appendix: Details of WV-HMC (1/2)

- Prepa ration [MF-Matsumoto 2012.08468]

_[ dtdz, e Ve 3@ (7)) . " H/t
— t+dt %
<O(X)> j dtdZt e—W(t)e S(z) /f—i-dt x® + dz)
. " dt
natural measure to appear in HMC on R APM decomposition  Gopy
= vol element Dz of the induced metric % z*

/z_,_ ) Exa +dx%) >
| dz; (x) |

(base area)

ds® = a’dt? + y,, (dx* + B2dt)(dx" + B°dt) (o : lapse)
5Zt(><)}

OX

Dz = e dt | dz,(X) |= & | det J | dtdx EJ—

dtdz,(x) = py 4z (), didxdetd a(z)e'?? (e‘“”(z) = de—t‘]j

Dz dtdxa | det J | |detJ |

j dtdz e WheS@0(7) I Dz (2)e' 7@ gV g-ReS(@)-1IMS(2) 1y )
_[ dtdz, e Ve () I Dz o~ (z)e'¢(z)e W (t)q-ReS(2)-i1ImS(2)

..............................................................

(OK)) =

-----------------------------------------------------

--------------------------------------------------------------
--------------------

. (Hapy = AR DE 1)
_JR T PP it , _ !
R Dz e_V(Z)EA(Z) <A(Z)>R R — '[R Dz e V()

---------------------

J [27/36]



Appendix: Details of WV-HMC (2/2)

[MF-Matsumoto 2012.08468]

W Algorithm
(A(2)O(2)) [ DzeV@i(2)
O(x)) = f =R
(O(x)) AD)n (f(2))5 _[ T
R
V(z) =ReS(z) +W (t(z)) : potential (e””(z) _ det] j
A(Z) = aY(z)e'?Pe ™S - reweighting factor | detd |

HMC on a constrained space [Andersen 1983, Leimkuhler-Skeel 1994]

N
(f(2)), is estimated with RATTLE \IQ
7Ty, =1 —ASOV (2)-1 A4
Z'=7+AS Ty
n'=r—AsoV(Z)-A

Zi.—l—h

AeN,R and 1"e N, R are determined s.t.

’eR
7'eT,R

cf) RATTLE on J =X, [Fujii et al. 2013]
RATTLE on Z; [Alexandru@Lattice2019, MF-Matsumoto-Umeda 2019]

[28/36]
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Successfully applied to ...

— (0+1)dim massive Thirring model [MF-Umeda 1703.00861] (TLT)

— 2dim Hubbard model [MF-Matsumoto-Umeda 1906.04243, 1912.13303]
(TLT)

— chiral random matrix model (a toy model of finite-density QCD)
[MF-Matsumoto 2012.08468] (WV-HMC(Q)

— anti-ferro Ising on triangular lattice [MF-Matsumoto 2020, JPS meeting]
(WV-HMCQ)

— complex scalar field at finite density [MF-Namekawa 2022, in preparation]
(WV-HMC(Q)

So far always successful for any models when applied,
though the system sizes are not yet very large (DOF N <10*)

[29/36]



— (0+1)dim massive Thirring model [MF-Umeda 1703.00861] (TLT)

—_[MF-Matsumoto-Umeda 1906.04243, 1912.13303]
(TLT)

[MF-Matsumoto 2012.08468] (WV-HMCQ)

— anti-ferro Ising on triangular lattice [MF-Matsumoto 2020, JPS meeting]

(WV-HMC)

So far always successful for any models when applied,
though the system sizes are not yet very large (DOF N <10%)

[MF-Namekawa 2022, in preparation]
(WV-HMCQ)

[29/36]



Chiral random matrix model (1/2)
. . [MF-Matsumoto 2012.08468]
W finite density QCD

0 o
U
:tre_'B(H_,UN) [{yﬁl’yv}:25ﬂV’ y#:y;:[GT OJ]
(U292)[trF 2, + [[7 (7D +m)y +uy y]

ZQCD U

= J[dA ldydy] e

B I G
8 aj(a# +A)+u m
toy model

B chiral random matrix model [Stephanov 1996, Halasz et al. 1998]

B _ntrwiw m IW + ) (quantum field replaced by
Z steph —IdZVV € det(iwf ey m J (a matrix incl spacetime DOF
(T=0,N, =1)

W = (VVIJ) = (le + IYIJ) NxXn Comp|eX matl’iX
(DOF : N=2n* < 4L*(N?-1))

M role as an important benchmark model

- well approximates the qualitative behavior of QCD at large n

- complex Langevin suffers from wrong convergence [Bloch et al. 2018]
[30/36]



Chiral random matrix model (2/2)

matrix size : n=10 (DOF : N = 200) [MF-Matsumoto 2012.08468]
(now easy at large DOF compared to the original TLTM) sample size

1 2 reweighting : 10k
. — . _ complex Langevin :10k
chiral condensate (yy) = oA InZg,,, [m=0.004, T =0] WV-TLTM - 4k-17k

0.06 ] 0.06F

0.05

¢ WV-TLTM

X reweighting ’ 0.05 —

= exact

——0:04

X complex Langevin 1

< 003} < 003 WV-HMC — exact
= .02; reweighting S ook .
i 3
0.OI:§S|gn problem ool .
0.00 ] X %
: 0.00f x
0.01} ] - complex Langevin
R P T Y SR -001fwrong convergence)
0.2 0.4 0.6 0.8 1.0 02 02 o o v
u

. 1 "
baryon # density <WTW> E_EanSteph
- 2ndu

5ol 25 WV-HMC ]
[ X reweighting X X 2.0:_ °* WV-TLTM _:.
].5} — exact E X complex Langevin y X X )(
g [ . ht' ] § 1~5_' — exact X x ]
B - reweighting (x4 1 z i x X 1 .
s 1o (sign problem) * : 2 10} *” complex Langevin
: ] i x (wrong convergegnce)
0.5F ] [ 174
E ; 0.5 -x y X X
—0:07 1 0.0F .
0.2 0.4 0.6 0.8 1.0 02 04 06 08 10

! p [31/36]



Finite-density complex scalar field (1/3)

[0, (X) +1¢,(X)] : complex scalar field

@(X) = ﬁ

Continuum action

(X, : Euclidean time)
S(p) = [d°X[8,0'0,0+M*p'p+ Ap"p) + (" Oop— 000" p) |
= [d*X[ (0,9 + 16, 0" )8, — 15, 4p) + M* |9 +2| 0"

Lattice action [Aarts 0810.2089]

d_
S(p) = Z{(Zd +m*) @, [ +A 1o, ' =D (" glo,., + “5V'°¢n¢§+v)}
n v=0

Introducing (&,,n,) with o. =— (&, +in,), we have

V2
8(5’77) = Z (é: 77[1) + (5 + nn) o Z (§n+|§ + 77n+|77n)

! __COSh ,U(émogn + 77n+077n) - ISInh :u (é:n+077n o 77n+0§n)

2d+m

We complexify (£,17) e R? to (z,w) e C* with the flow equation

2, =[0S(z,w)/oz.], W, =[0S(z,w)/ow,] (V . lattice volumej

= N =2V [32/36]



Finite-density complex scalar field (2/3)

B Computational scaling in 2D [MF-Matsumoto-Namekawa, Lattice2022]

10— R
Complex ¢ oV
®. |m=0.10, A=1.0 /
©  10° Nstep * As = 0.1 /’ 1 computed on Yukawa?21
o | /" | (@YITP Kyoto Univ)
= to be run on Fugaku
e 107
@
101101
V=L
The figure clearly shows that the comput cost scales as O(V) = O(N)

(N =2V)
NB: The scaling will become O(V1?)

if we reduce the MD stepsize as As o\ V4
to keep the same amount of acceptance for increasing volume (33/36]



Finite-density complex scalar field (3/3)

[MF-Namekawa, in preparation]

B Comparison with TRG method [TRG (2D): Kadoh et al. 1912.13092]

—~
-
~

03

3.5

3.0}

25}

2.0

1.5}

1.0

05F

0.0

[TRG (4D): Akiyama et al. 2005.04645]

2D

TRG[Kadoh et al.(2019)] 4 x 4 —
TRG[Kadoh et al.(2019)] 16 x 16 —
TRG[Kadoh et al.(2019)] 256 x 256 —
4 x 4 (Nconf=8000) s
6 x 6 (Nconf=4000) ~——

8 x 8 (Nconf=4000-5000) -
16 x 16 (Nconf=1000)

Compbx®

m=0.10, A=1

0

0.2 0.4 0.8

Silver Blaze

0.6 n

(n)

4D

0.8 . .

TRG[Akiyama et al.(2020)] 4* —
071" TRG[Akiyama et al.(2020)] 8* —
0.6 || TRG[Akiyama et al.(2020)] 1024* —

4 ——t
051 4" (Nconf=1000)
0.4
03} 4
0| Complex ¢
01| M=0.10, A=1.0
0.0
. ~ saturate for TRG

%o 0.2 04 | 08 0.8 1.0

Silver Blaze

- WV-HMC gives results consistent with TRG at small volumes

- It should be interesting to investigte behaviors at large 4D volumes
where TRG starts suffering from the systematic errors

due to the introduction of D_,

[34/36]



Yang-Mills theory has become a target

[MF, in preparation]

WV-HMC also works for group manifolds
[MF, in preparation]

[MF-Kanamori-Namekawa,
ongoing]

[Example]
1-site model with a pure imaginary coupling:

_ _F -
S(U)=,B€(U)=Ntr(2—u ~u™)
(UeG=SU(2); BeiR)
analytic result: (&) =1-1,(8)/1,(5)

numerical result (WV-HMCQ):
Re (&) Im{e)

2.0

1.5

1.0

-
-
4

H

0.5

0.5 1.0 1.5 2.0 2.5 ﬂ /I

This algorithm can be applied to Yang-Mills theory straightforwardly

[MF-Kanamori-Namekawa, ongoing] [35/36]
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Summary and outlook

B Summary

¥ WV-HMC seems to be a promising method esp. for local field theories
- Allows a coding such as to enjoy the locality

- Does not have a wrong convergence problem (as in the complex Langevin)
- Can increase the precision to arbitrarily high order by increasing the sample size
(No systematic errors such as those caused by introducing D_,, in TRG)

“Power of Monte Carlo”

B Outlook

V¥ Application to QCD

- WV-HMC for a path integration on a group manifold [MF, in preparation]
- WV-HMC for pure Yang-Mills with finite # [MF-Kanamori-Namekawa, ongoing]
- WV-HMC for ﬁnite—density QCD [MF-Kanamori-Namekawa-..., ongoing]

V¥ Further improvement of algorithm [MF, MF-Matsumoto-Namekawa-..., ongoing]

¥ Combining various algorithms
(e.g.) path optimization method and/or TRG (non-MC) f&:iﬁ;ﬁ;zﬁa\:xmoto 2107.14149]
V¥ Particularly important: MC calc for time-dependent systems
first-principles calc of nonequilibrium processes

such as those in the early universe, heavy ion collision experiments, ... 136/36]



Thank you.
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