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Advantages of the TRG approach

v/ Tensor renormalization group (TRG) is a deterministic numerical method
based on the idea of real-space renormalization group.

* No sign problem

- The computational cost scales logarithmically w. r. t. system size
* Direct evaluation of the Grassmann integrals

* Direct evaluation of the path integral

v/ Applicability to the higher-dimensional systems

TRG is a kind of tensor-network method and its application to higher-
dimensional systems has recently made remarkable progress.

Lagrangian (TRG) approach: Meurice+, Rev. Mod. Phys. 94(2022)025005
Hamiltonian (TNS) approach: Banuls-Cichy, Rep. Prog. Phys. 83(2020)024401

— toward the 2d quantum systems: PEPS, Tree TN, isoTNS, Fermionic isoTNS...
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Procedure of TRG approach

1) Write down the target function X defined on lattice as a tensor contraction
(tensor network).

ex. Partition function, Path integral, ...

2) Approximately perform the tensor contraction with TRG.

1) TN representation for X : (# of tensors in TN) = (# of lattice sites)

X - Zabcd---Taiw---Tbjx---Tcky---lez---"'

2) TRG : Block-spin trans. for T to reduce # of tensors in TN

=~ Za’b’c’d’---T’a’i’W’---T,b’j’x’---T,c’k’y’---T,d’l’z’---
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TN rep. for 2d Ising model w/ PBC

Decompose nearest-neighbor interactions

Z = Z{g=i1}nn,ueXp[,B]0'n0'n+ﬁ] ::> Z = Tr[HnTan’nxrlly;z]

Ty vy xy specifies the details of the model
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Basic concept of TRG algorithm

Idea of real-space renormalization group
lterate a simple transformation w/ approximation
and we can investigate thermodynamic properties

We cannot perform the contractions

in TN rep. exactly ( too many d. o. f.)

_|_

Information compression
w/ the Singular Value Decomposition (SVD)

"""" O——0—0- Ay = LU0y Vi = ZR-1 Uy o Vi

[ P @O @——Q
( A:mXn matrix, U: mXm unitary, V:nXn unitary )
X

2

TRG employs the SVD to reduce d. o. f. :
and perform the tensor contraction approximately
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Higher-order TRG (= TRG w/ isometry insertion)

Xie+, PRB86(2012)045139

. _ , , Cf. See poster by Xiao Luo
v/ Applicable to any d-dimensional lattice

HOSVD
—_

DD 2N

; _ .
|— b% N\ © / D

Iteration | | 1

Contraction

Sequential coarse-graining along with each direction D: bond dimension

v # of tensors are reduced to half.
Iterating this CG n times, we can approximately contract 2™ tensors.
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Anisotropic TRG ( = TRG w/ indirect SVD )

Adachi-Okubo-Todo, PRB102(2020)054432
v Applicable to any d-dimensional lattice Cf. See poster by Katsumasa Nakayama

v/ Accuracy with the fixed computational time is improved compared with
the HOTRG, which is a conventional algorithm to the higher-dimensional systems

o

~

(A)

Q

<<
<|>

Iteration Contraction

X
~ D
Txyx’y’ ~ i=1Axyin’y’i

ATRG considers the block-spin transformation within
lower-rank tensors ( Memory: 0(D?4) - 0(D%*1)) # of tensors are reduced to half




Relative error of free energy
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Benchmarking w/ 2d Ising model

Comparison of three types of TRG Relative error vs execution time
w/ D = 24
107 E 107
-8 Levin-Nave TRG | ] - AH-A ATRG
AH-A ATRG ] i G- HOTRG
&-© HOTRG 10°F

Relative error of free energy

10'9 Il 1 ‘ 1 ‘ 1 ’9 I Il Il Il 1111l X Il Il Il 1111l X Il Il Il L1 11 X Il Il Il Il 1
2.1 22 T 23 24 2.5 10 10 10° 10 10
emperature Execution time [sec]

v HOTRG & ATRG improve the accuracy of the original (LN-)TRG at the same D.
The exact solution is well reproduced.

v/ ATRG shows better performance than the HOTRG at the same execution time.
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Current status of TRG in the higher-dimensional systems

Algorithm

HOTRG
Xie+,
PRB86(2012)045139

Anisotropic TRG

(ATRG)
Adachi-Okubo-Todo,
PRB102(2020)054432

Triad RG
Kadoh-Nakayama,
arXiv:1912.02414

Cost

D*4-1]p],

D2d+11nL

D4+3InL

Applications to 3d

Ising Xie+,

Potts model wang+,
free Wilson fermion sakai+,

4., gauge theory

Dittirich+, Kuramashi-Yoshimura

Ising model Adachi+,
SU(Z) gauge Kuwahara-Tsuchiya,
Real ¢* theory sA+,

Hubbard model sA-Kuramashi

Z- gauge-Higgs

SA-Kuramashi

Ising model Kadoh-Nakayama,

O(2) model Bloch+,

Z5 (extended) clock model Bloch+
Potts models Raghav G. Jha

Applications to 4d

Ising model sa+,
Staggered fermion

w/strongly coupled U(N)
Milde+

Complex ¢* theory sa+,
NJL model sa+,
Real ¢* theory sa+
Z.» gauge-Higgs

SA-Kuramashi

D: bond dimension, L: linear system size, d: spacetime dimension



TRG approach for fermions on a lattice
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Auxiliary fermion fields to derive the TN rep.

SA-Kadoh, JHEP10(2021)188

Decompose hopping structures via

eA¥n¥niu = ([ [ dij,dnpe ™) exp[—VAP1, + VAT Pnsn]

Original Z TN rep for Z
_ [ with the weight e~
f over {l/}’ lp} over {ﬁ’ n}

7

Integrating out {1, 9}, we can find a tensor defined on each site

Original Grassmann numbers are manifestly converted
into the Grassmann numbers ( = auxiliary fermion fields)



Structure of the Grassmann tensor

v The G tensor is defined as a multi-linear combination of the G numbers.

i1 iy i3

771712773 Z 111213 NN ng -

i1,i2,i3,"

v A clear correspondence btw usual tensors and G tensors.

_ Tensor Grassmann tensor

index integer Grassmann number
contraction ;e | [ didne™m ...

v Any TRG algorithm can be easily applied to evaluate path integrals
including fermions.

10/20
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Restoration of chiral symmetry in the cold & dense (3+1)d NJL model
SA+, JHEP01(2021)121

v ATRG w/ parallel computation allows us to investigate the cold & dense
regime, where the MC suffers from the severe sign problem.

v The resulting chiral condensate shows the first-order transition as expected
by several analytic methods.

Phase diagram on T-u plane Chiral condensate
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Metal-insulator transition in the Hubbard model at finite density

SA-Kuramashi, PRD104(2021)014504,
SA-Kuramashi-Yamashita, PTEP2022(2022)023101

v Non-relativistic lattice fermions can also be dealt w/ the TRG approach.

v In (1+1)d, the TRG provides us with the transition point as u. = 2.642(05)(13),
which is consistent with the exact one (u. = 2.643 ...).

Number density in (1+1)d Number density in (2+1)d
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Bond-weighting method for the Grassmann TRG

v Bond-weighting method is a novel way to improve the accuracy of LN-TRG
algorithms without increasing their computational costs.

Adachi-Okubo-Todo, PRB105(2022)L060402

v Bond-weighting method works well also for lattice fermions.
SA, JHEP11(2022)030

v A sample code is available on GitHub.
https://github.com/akivama-es/Grassmann-BTRG 2d massless free Wilson fermion
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https://github.com/akiyama-es/Grassmann-BTRG

First application of TRG to 4d LGT

S. A. and Y. Kuramashi, JHEP05(2022)102
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7., gauge-Higgs model in the unitary gauge
v Action of the (d + 1)-dimensional Z, gauge-Higgs model

§=—BYn2vsp Uy(MU,(n +V)U,(n + p)U,(n)

—N X Zv[e“&"dﬂa(n) U,(n)a(n + V) + e #va+tig(n)U,(n — v)o(n — 1?)]

n+p] Uv(n+p) oo

7

U,(n)(€ Z5): link variable (gauge field)
o(n)(€ Zy) : matter field

>
AN

Up(n) 4 \ U,(n+7)

n? > 40

U, (n)
v Choosing the unitary gauge, all the matter fields are eliminated

o(m)U,(n)a(n +79) = U,(n)

S = =B ¥nZvsp UyMU,(n + DU, (n + p)U,(n) — 2n ¥, By cosh(udy,a11) Uy (1)
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Motivation of studying Z, gauge-Higgs model

v The simplest lattice gauge theory coupling to a matter field

A good target to see whether the TRG is efficient for the 4D lattice gauge
theory or not.
In this study, we employ the ATRG algorithm.

v The model possesses the critical endpoint (CEP)

QCD at finite temperature and density also has the CEP.
Can we use the TRG to specify the precise location of CEP?

v We can consider the model at finite density

We can investigate how the CEP moves by introducing the chemical potential.
Note that the model is free from the sign problem even at finite density.

(TRG calculation for the 4D lattice gauge theory with the sign problem is an
important future work, which is in progress)
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Phase diagram of the (3+1)D modelat u = 0

We investigate the phase diagram along the

i : irst- i rd the critical endpoint.
Critical endpoint first-order line toward the critical endpoint

We evaluate the average link (L), whose gap
vanishes at the critical endpoint.
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First-order transition point
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Study of the (2+1)D modelat u =0
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(3+1)D model at vanishing density

withD <52, 5, —n_ = 0(10™%)
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Current status of the phase diagram near the CEP

0,30 T T T T | T | T |
i A Mean-field theory i
025 B Monte Carlo _
| E | ¢ TRG
i ¢ TRG(u=1) .
020 A ¢ TRG (u=2) _
B 299 . ]
MN0.15- S o
Triple point
_ e ple p
by the MC
0.10
% Creutz, PRD21(1980)1006
005+ Pure-gauge
i transition
0.0 ! | ! I . | | | | | L Balian-Drouffe-ltzykson,
' 8.15 0.20 0.25 0.30 0.35 0.40 0.45 PRD11(1975)2098
B

It seems that TRG and MC share a similar first-order lineat u = 0

A deviation about the location of the CEP
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Summary & Outlook

v The TRG approach does not suffer from the sign problem and allows us
to investigate the thermodynamic limit.

v TRG algorithms are useful to investigate fermionic systems.

v The ATRG algorithm w/ parallel computation has been a good way to
investigate higher-dimensional QFTs on a lattice.

v A next target is the (3+1)d LGT coupled to fermions.

cf) Variational approach based on the tree TN for the(3+1)d lattice QED (L < 8).
Magnifico+, Nature Commun. 12(2021)1

v Aiming to establish a TRG algorithm to deal w/ two- and three-flavor
(or more?) lattice fermions. sa,in progress



