
Nobuyuki Matsumoto

Diagnosing trivializing maps

RIKEN R-CCS 16.02.2023

(RIKEN BNL Research Center)

Boyle-Izubuchi-Jin-Jung-NM-Lehner-Tomiya,
PoS(LATTICE2022)229 [arXiv:2212.11387],

Work in progress

1/26



 200

 205

 210

 215

 220

 225

 230

 0  0.002  0.004  0.006  0.008  0.01  0.012  0.014

a µ
W

,is
o,

co
nn

,u
d  x

 1
010

a2 / fm2

ZV,  ω̂, Cll

ZV,  ω̂, Clc

ZV, ω, Cll

ZV, ω, Clc 
ZV*,  ω̂, Cll

ZV*,  ω̂, Clc

ZV*, ω, Cll

ZV*, ω, Clc

• Lattice calculation has been giving important inputs 
to the standard model.

• A major source of uncertainty is
the continuum extrapolation, which can be 
in principle reduced by adding results of fine lattices.

• However, as we reach the continuum limit, 
we encounter the critical slowing down when generating configurations,
which adds at least exponential computational cost to the simple volume scaling.

Introduction (1/3)
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g-2 window update
RBC/UKQCD (incl NM) 2301.08696



Critical slowing down is a common pitfall of the Monte Carlo algorithm in critical statistical systems;
in fact, major algorithm developments has aimed to accelerate Monte Carlo sampling:

Introduction (2/3)

• Fourier acceleration/Riemannian manifold MC

• Trivializing map/normalizing flow

• Overrelaxation

3/26

• Multigrid Monte Carlo

• Cluster algorithm

• L2HMC, winding HMC, …

• Parallel tempering

defect tempering: 

Parisi 84, Batrouni et al. 85,88,90 / Nguyen et al. 2112.04556

Lüscher 0907.5491 / Rezende-Mohamed 15

Adler 81, Whitmer 84, Creutz 87

Parisi 84, Goodman-Sokal 86 (see also Wolff 90)

Swendsen-Wang 87, Wolff 89

Swendsen-Wang 86, Geyer 91, Hukushima-Nemoto 96

Hasenbusch 1706.04443, Berni-Bonanno-D’Elia 1911.03384, Bonanno-Bonati-D’Elia 2012.14000

stochastic: 
Wu-Kohler-Noe 20, Caselle-Cellini-Nada-Panero 2201.08862

Foreman-X.Y.Jin-Osborn 2105.03418, Albandea, et al. 2106.14234, …

ML application: Akio’s talk on 15th

For Fermion Preconditioner: Wettig’s talk on 15th
and Peter’s talk this morning

For Sign Problem: Fukuma’s talk just before the break

Francis’ talk on 17th
• Master field

Lüscher 1707.09758, Bruno-Cè-Francis-Green-Hansen-Zafeiropoulos 2212.09533



• Nonperturbatively improving the map with a Schwinger-Dyson equation
including all the Wilson loops up to footprint 2

Jin LATTICE 2021 poster

Lüscher 0907.5491

Engel-Schaefer 1102.1852

Short timeline of the trivializing map

• Testing the LO approximation in 𝐶𝑃!"# model

Introduction (3/3)
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• Original proposal: trivializing map as a gradient flow

• Machine learning approaches Albergo-Kanwar-Shanahan 1904.12072, Foreman et al. 2112.01586
Bacchio-Kessel-Schaefer-Vaitl 2212.08469, Gomalizing flow

performance asserted negatively 

The fact that no visible gain has been found (apart from rapid developments in ML) 
suggests that neglected large loops greatly contribute to the autocorrelation.

• What does the exact flow kernel at large 𝛽 look like?
Is it really close to the Wilson flow?

• What are the appropriate basis functions to parametrize the kernel at large 𝛽?

A critical problem is that we only know little about the exact trivializing map.
More concretely, one may raise the questions:

• Wilson flowed HMC ×1.5~2 in tunneling rate in the unit of MC step

Boyle-Izubuchi-Jin-Jung-NM-Lehner-Tomiya LATTICE2022 [2212.11387]

no vivid reduction in autocorrelation compared to the overhead

“The reduction in the forces, ..., is compensated by the computational overhead”



Summary of the talk (1/1)
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Boyle-Izubuchi-L.Jin-Jung-NM-Lehner-Tomiya 2212.11387 
(work in progress)

• Using a simple 2D U(1) model, we analyze (spatially truncated) exact trivializing maps.

Aim of this work

• Why the Wilson flow is not so effective.

• This model is still far from the full QCD;
however, there exists topological freezing at large 𝛽
and the trivializing map is nontrivial.

Good testing ground to study the properties of the exact map
and to find effective approximations aiming for the full QCD.

This talk reports the ongoing study partially addressing the points:

• The convergence radius of the flow-time expansion of the flow kernel.

• How many links need to be involved in the map to stimulate the tunneling
(concrete results to be seen in future work).
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Critical slowing down (1/1)

Make physical predictions from the lattice path integral:Goal

𝒪 ≡
∫ 𝑑𝑈 𝑒"$ % 𝒪 𝑈
∫ 𝑑𝑈 𝑒"$ %

𝑆 𝑈 ≡ −
𝛽
6 '
!,#$%

Re tr 𝑈!,#𝑈!&#,%𝑈!&%,#
' 𝑈!,%

'

Wilson 74

𝑥! = 𝑡

𝑥"

e.g., Wilson action
𝑥 𝑥 + 𝜇̂

𝑼𝒙,𝝁

infinite correlation length in lattice units (since 𝑎 → 0),
which is a property of 2nd order phase transition.

• We expect to have a finite correlation length in physical units in the continuum.

• Generically, as we approach the critical point, 
more and more modes contribute to the correlator to give the quasi-long-range correlation.

Such long correlations make the Monte Carlo simulation inefficient
because we need to move a large number of DOF 
simultaneously and in a specific way to conserve the energy functional. critical slowing down

Wilson 74

#
emnst.exponent

e

(in lattice units)

#cidowervetin

#
emnst.exponent

e

(in lattice units)

#cidowervetin



Topological freezing (1/3)

Further complication in QCD: topological freezing
Cause: nontrivial topological sectors of gauge field on 𝑇& in the continuum

As the continuum limit is reached, the lattice gauge field acquires continuum-like nature.
Correspondingly, configurations will be trapped in the emerging disconnected sectors
during the Monte Carlo simulation (topological freezing).

7/26

• Periodicity is defined only up to gauge transformation:

𝐴' 𝑥( = 𝐿 = 𝑣( 𝑥 𝜕' + 𝐴' 𝑥( = 0 𝑣("# 𝑥 .

• The gauge function (or transition function) 𝑣' 𝑥

• One can show that 𝑄 ∈ ℤ by, e.g., taking the pure gauge:

𝑄 ≡
−1
16𝜋 ∫ d

(𝑥 tr 𝐹#% 3𝐹#%

−3∑&'( ∫) &,( tr [𝑑𝑣(
*+ 𝑥& = 𝐿 𝑣( 𝑥& = 𝐿 𝑣& 𝑥( = 0 𝑑𝑣&*+ 𝑥( = 0 ]

∑#∫) # tr 𝑣#𝑑𝑣#*+
,

=
1

24𝜋-

• Topological sectors are disconnected 
∵ they have 𝑣' 𝑥 that cannot be continuously deformed to one another.

𝑔*+ 𝑥& = 𝐿 𝑔 𝑥& = 0 = 𝑣&𝐴#𝑑𝑥# = 𝑔*+𝑑𝑔 𝑄 ≡
1

24𝜋-
<
./
tr 𝑔*+𝑑𝑔 , ∈ ℤconstraint:

More mathematical way to see the freezing is
through the geometrical definition of the lattice topological charge.

‘t Hooft 81
cf. Dirac monopole

Solely expressed with 𝑣& 𝑥 !

encodes the topological information of the gauge field:
Lüscher 82, van Baal 82, Phillips-Stone 86
see also Kronfeld 88

Lüscher 82

->

p(,r)
A a 1)periodicf(t)

·Ain
#

roofaction: SCUL
I map(

#VccMaction: Set(V)

count winding of SU(2) around 𝑆,



Simpler example: 𝑈(1) on 𝑇)

Emergence of disconnected topological sectors.

Similarly for SU(2) on 𝑇&, exceptional configurations (= boundary of 𝑄)
consists of ∃ local Wilson loop = −1, which will be suppressed at large 𝛽.

• Lattice topological charge: total winding of the plaquette angles 𝜅*:

𝑄 is defined unambiguously except for the exceptional configurations.
s.t. ∃𝑥, 𝜅! = 𝜋
(∴ measure zero in path integral).

Boundary of 𝑄 sectors are the exceptional configurations.

• Tunneling only occurs when the fluctuation becomes so large 
that the plaquette angle goes around the 𝑆# penetrating the potential barrier at ±𝜋.

Lüscher 82 gave the map from the nonexceptional gauge fields to the transition functions 𝑣# 𝑥 .

8/26

𝑄(,-.) = "#
)0
∑* 𝜅* 𝜅* ≡

1
𝑖
log 𝑈*,2𝑈*32,#𝑈*3#,2

4 𝑈*,#
4 ∈ [−𝜋, 𝜋)

𝜅*

0

±𝜋: bdy of 𝑄

𝑆 𝑈 = −𝛽R
*

cos 𝜅* .

However, such large fluctuation will be directly suppressed 
for the Wilson action at large 𝛽:

−𝛽cos 𝜅!

potential

Topological freezing (2/3)

Phillips 85, see also Fujiwara et al. hep-lat/0001029 

Lüscher 82

↑doodaeint



Regarding both critical slowing down and topological freezing, 
they are rather intrinsic to the lattice simulation near the continuum (at large 𝛽).

A detour for the topological freezing: open boundary condition

Cons 

In particular, translational invariance will be violated.

trivializing map!

Pros 

No more topological sectors in the continuum!

Need to consider the boundary effects.

9/26

want to avoid if possible
∵ many statistical techniques assume the translational invariance

it will be advantageous if one can use small 𝛽 simulation to generate large 𝛽 configurations.

𝑥! = 𝑡

𝑥"

No periodicity

Topological freezing (3/3)

Lüscher-Schaefer 1105.4749
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• With a field transformation, we can obtain a new effective action:

𝑍 ≡ ∫ 𝑑𝑈 𝑒GH I = ∫ 𝑑𝑉 det ℱ∗ 𝑉 𝑒GH ℱ L ≡ ∫ 𝑑𝑉 𝑒GH566 L .

Trivializing map (1/4)

10/26

Idea

For 𝑈 = ℱ 𝑉 ,

𝑆788 𝑉 ≡ 𝑆 ℱ 𝑉 − ln det ℱ∗ 𝑉

• We can perform the ordinary Monte Carlo sampling (e.g., HMC)
in the 𝑉-space with the action 𝑆788 𝑉 .

𝑈: original (or “physical”) variable 𝑉: new (or “artificial”) variable

Prepare ℱ so that the sampling in 𝑉-space becomes efficient!

𝑆NOO 𝑉 = const

Such ℱ maps the finite β theory to the strong coupling limit β = 0 , 
which is the opposite of where the critical slowing down occurs β = ∞ .

• Ultimate ℱ: trivializing map

Lüscher 0907.5491

cf. in SUSY theory: Nicolai 80

Duane et al. 87

Jacobian

#Use action: SCUL

↑ map (

#action: Seti(



𝑒:,,-
. ;.𝑈*,'. 𝑇0: su(3) generators. tr 𝑇0𝑇1 = − +

-𝛿
01

• Haar measure: 𝑑𝑈 ∝ ∏2 𝑑𝜃2

Writing down the Jacobian ℱ∗ 𝑉

𝐴 ≡ (𝑥, 𝜇, 𝑎) labels the DOF

𝜕*,'< 𝑈*,' ≡ lim
=→2

?/0
.
"# %,,-
=

= 𝑇<𝑈*,'. 𝜕*,'< = 𝜕:,,-. |:@2.

• Introduce a local parametrization 𝜃!,#0 of the field space around a configuration 𝑈!,#:

For later convenience, we also define the derivative:

In other words,

11/26

• ℱ∗ 𝑉 = ℱ∗ 𝑉 AB can be read off from the infinitesimals:

𝑑𝜃(%)A = ℱ∗AB 𝑉 𝑑𝜃(C)B .

Trivializing map (2/4)

dOcul
- r

Ya
*

v

#.Fr.SINEU.phyoCeete
In Lüscher 0907.5491, the symbol 𝜃!,#0 is used for the Maurer-Cartan form Θ!,#0 :

Comment on the convention

Θ!,#0 = 1 + 𝑂 𝜃 𝑑𝜃!,#0

Θ!,#0 is the dual of 𝜕!,#0 : Θ2, 𝜕3 = 𝛿23. See, e.g., Chevalley 46

(at each point 𝑈!,# on the group manifold).



Trivializing map (3/4)

• Lüscher chose the gradient flow ansatz:

− 𝜕A )𝐾= + 𝑡 𝜕A𝑆 𝜕A𝐾= = −𝑆

𝑆788, = 𝑉 = 𝑆 ℱ= 𝑉 − ln det ℱ=∗ 𝑉

• Require that ℱ= trivializes the theory at 𝑡 = 1:

ℱ̇= 𝑈 *,' = −𝑇<𝜕*,'< 𝐾= 𝑈 ⋅ 𝑈*,' .

(up to const; ignored hereafter)

* requirement
= 1 − 𝑡 𝑆 ℱ= 𝑉

𝑑/𝑑𝑡

from Jacobian from action

Δ

*

12/26

Solving the map has boiled down to 
solving a linear differential equation!

• For convenience we define 

ℒ= ≡ − 𝜕A ) + 𝑡 𝜕A𝑆 𝜕A

∴ ℒ=𝐾= = −𝑆*

Lüscher 0907.5491

dOcul
- r

Ya
*

v

#.Fr.SINEU.phyoCeete
𝑆 𝑈 : original action
𝑆566,7 𝑉 : effective action

𝐾7 𝑈 : flow kernel

NB



Trivializing map (4/4)

• The differential operator ℒ= = − 𝜕A ) + 𝑡 𝜕A𝑆 𝜕A is

𝜓,𝜙 ≡ f 𝑑𝑈 𝑒"= $(%) 𝜓∗ 𝑈 𝜙(𝑈)

∴ ℒ= shares (mostly) the same properties with the Hamiltonian in QM.

- elliptic (∴ bounded from below)
- symmetric with respect to the inner product:

- eigenvalues of ℒ= are nonnegative
- zero-mode is unique, which is constant (∵ 𝜕2𝜓8 = 0)

𝜆D = 𝜓D , ℒ=𝜓D = ∫ 𝑑𝑈 𝑒"=$ 𝜕A𝜓D ) ≥ 0 .

ℒ="# can be taken after removing the zero mode, and thus modulo constant.

• For a normalized eigenvector 𝜓D,

ℒ= is diagonalizable and the eigenvectors form a complete set.

13/26

Existence

∴ The solution of ℒ=𝐾= = −𝑆 exists!

Lüscher 0907.5491

i.e., 𝜓, ℒ=𝜙 = ℒ=𝜓,𝜙 .

NB Structure-wise ℒ= = −𝜕A + 𝑡 𝜕A𝑆 ∘ 𝜕A may be related to 
the Fokker-Planck Hamiltonian of Langevin dynamics.

cf. In a RG flow of 𝝓𝟒: Abe-Fukuma 1805.12094



Lüscher further gave a way to construct the map as a 𝑡-expansion:

− 𝜕A )𝐾= + 𝑡 𝜕A𝑆 𝜕A𝐾= = −𝑆.

𝜕<
𝜕< = −

1
2

−
1
3

tr[ 𝑇< )…] = − &
E
tr …Recall:

𝜕!,#0 ∼ 𝑇0 insertion

Plug into the equation:

𝜕< ) = −
4
3

tr 𝑇<𝐴 tr 𝑇<𝐵 = − #
)
tr 𝐴𝐵 − #

E
tr𝐴 ⋅ tr𝐵

𝑡-expansion (1/2)

• This recurrence equation can be inverted order by order.

• Expand 𝐾= as a Taylor series:

Matching the powers of 𝑡,

ℒ2𝐾(2) = 𝑆,

ℒ2𝐾(F) = −𝜕𝑆 ⋅ 𝜕𝐾 F"# 𝑚 ≥ 1 .

14/26

𝐾c = ∑def 𝑡d𝐾(d).

• Radius of convergence proven to be finite (more at this point later)

Lüscher 0907.5491

Basic machinery
•

•



𝑡-expansion (2/2)
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𝐾= = − G
E)
𝑊2

+𝑡
𝛽2

192
−
4
33
𝑊+ +

12
119

𝑊2 +
1
33
𝑊3 −

5
119

𝑊4 +
3
10
𝑊5 −

1
5
𝑊6 +

1
9
𝑊7

+𝑂(𝑡))

LO: plaquette

• Solution for the Wilson action case: 𝑊2 = ∑

𝑊# = ∑ 𝑊) = ∑

𝑊H = ∑ 𝑊I = ∑

𝑊J = ∑

𝑊E = ∑ 𝑊& = ∑

+ 𝑐. 𝑐.

+ 𝑐. 𝑐. + 𝑐. 𝑐.

+ 𝑐. 𝑐. + 𝑐. 𝑐.

+ 𝑐. 𝑐. + 𝑐. 𝑐.

+ +

+ +

NLO: rectangle, chair, twisted rectangle …
“footprint 2 shapes”

• Leading order: Wilson flow = stout smearing 

Lüscher 0907.5491

Morningstar-Peardon hep-lat/0311018

smeared link

· =

x

(Ux,y)

unsmeared link

+ +H+

or
--
Ex,M

(v) vFMI
⑧

I-
-
i

++

smeared link

· =

x

(Ux,y)

unsmeared link

-

x,M

+ toy--Ec
(v) vFMI I-
-
i

++
Improving the map = adding more complicated shapes in RHS

• Lüscher’s proposal: use the truncated kernel as an approximated kernel.
LO=Wilson flow.

For More Details: Nagatsuka’s poster



8E×16, 𝛽 = 0.89 DBW2 (4d) (𝑎"# = 1.49 GeV) Boyle-Izubuchi-Jin-Jung-NM-Lehner-Tomiya 2212.11387 

𝑡9- 𝐸 |7!:7" = 0.3 Lüscher 1006.4518

𝑡8: Wilson smearing flow timeNormalized autocorrelation function 𝜌 𝑛
for the smeared energy density (𝑡K = 30𝑡2)

Smearing is performed so a long time
that the energy reflects the instantons

𝐸
| = 9

@
E2
= :

Faster decorrelation (in MC steps)
by including extended loops

Performance of field-transformed HMC (Schwinger-Dyson attempt) (1/1)
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0.4 12
53

173

2040

sec/conf

no flow
plaq

plaq+rect

plaq+rect

+chair plaq

+all fo
otprint 2

Computational cost (1 step flow)
RIKEN HOKUSAI
1 node 
(2 MPI x 40 OpenMP)
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2D U(1) (revisited) (1/1)

Wilson action:

Topological charge:

• Correlation length = 0

• topological susceptibility finite:

• Energy density: UV divergent

Thus in the following we deal with the topological freezing 
rather than the entire critical slowing down.

𝑆 𝑈 ≡ −𝛽∑k cos 𝜅k 𝜅* ≡
#
L
log 𝑈*,2𝑈*32,#𝑈*3#,2

4 𝑈*,#
4 ,

plaquette angle

𝑄 = Gl
mn
∑k 𝜅k

Characteristic features

• Exactly solvable by character expansion

𝑒 ≡
1
2𝑉

∫ 𝑑)𝑥 𝐹2#) ∼
𝑔)

2𝑎)
.

𝜒M ∼
𝑔)

2𝜋 ) .

= −𝛽𝑊f
𝑊2 ≡

#
)
∑ + 𝑐. 𝑐.

(factor 2 absorbed in 𝑊;)

17/26

= ∑cos 𝜅*

Gross-Witten 80, Rusakov 90



𝑡-expansion (revisited) (1/1)

Though algorithmically it was difficult to see,
the 𝑡-expansion is the power-series expansion of #

#"*
:

Convergence radius

• Since 𝑡 always appears in the product 𝛽𝑡,
large 𝛽 trivialization can easily be out of convergence.

(In such cases, no reason for the Wilson flow to be a good approximation.)

• Equation to solve: − 𝜕A ) + 𝛽𝑡 𝜕A𝑊2 𝜕A 𝐾= = 𝛽𝑊2

• Solution: 𝐾= = 𝛽 ⋅
1

− 𝜕A ) + 𝛽𝑡𝜕A𝑊2 𝜕A
⋅ 𝑊2

= 𝛽 ⋅
1

1 − 𝛽𝑡 𝜕A ") ⋅ 𝜕A𝑊2 𝜕A
⋅ − 𝜕A ")𝑊2

= 𝛽 ⋅ 1 + 𝛽𝑡 �𝑀 + 𝛽𝑡 ) �𝑀) +⋯ ⋅ 𝑊2

�𝑀 ≡ 𝜕A ") ⋅ 𝜕A𝑆 𝜕A= 𝛽 ⋅
1

1 − 𝛽𝑡 �𝑀
⋅ 𝑊2

18/26

• Determined by the largest eigenvalue of the operator �𝑀;
it then determines the applicable flow time 𝑡 for a given 𝛽.



• We compare the Wilson flow kernel with 
the exact trivializing map obtained by an inversion w/ CG

• Radius of convergence: 𝛽𝑡 < 2.40

𝛽 = 9.0
(@𝑡 = 1.0)

19/26

Angular dependence quite modest

@𝛽 = 2.4

History of 𝑄 in 2D 16x16 ordinary HMC

Comparison of the coefficients

Preparatory study: 1-plaquette model (1/2)

𝜅k

co
ef

f 
of

 c
os
𝜅 ;

co
ef

f 
of

 c
os
2𝜅

;

co
ef

f 
of

 c
os
4𝜅

;
𝑡 𝑡 𝑡

• System:

Does the exact flow kernel close to the Wilson flow?   --- Apparently not.



peaky structure 
just before 𝜃 = 𝜋

𝜃 = 𝜋 has
vanishing probability

• The peaky structure can hinder the tunneling.

20/26

• Higher windings are essential to control the shape of 𝐾= over the entire 𝑈(1).

• As expected from the gradient, Wilson flow overshoots (at least for this simplest system)

w/ Wilson flow kernel w/ kernel obtained by CG

(𝜖 = 0.025 in both cases)

Preparatory study: 1-plaquette model (2/2)



Remark (1/1)

• It is also possible to make a 1/(𝛽𝑡) expansion:

• Recall that, in the strong coupling regime, 
the plaquettes may be thought of as a spin-like collective variable.

𝐾= = 𝛽 ⋅
1

− 𝜕A ) + 𝛽𝑡 𝜕A𝑊2 𝜕A
⋅ 𝑊2

= 𝛽 ⋅
1

1 − 1
𝛽𝑡 𝜕A𝑊2 𝜕A "# 𝜕A )

⋅
1
𝛽𝑡

𝜕A𝑊2 𝜕A "# ⋅ 𝑊2

at least, its gradient gives the direction in which 𝛽 decreases at 𝛽 = ∞.

21/26

𝜕A𝑊2 𝜕A "# ⋅ 𝑊2

By analogy, in the weak coupling regime, the function: 

may be regarded as a (gauge-invariant) wave-like collective variable;

= 𝛽 ⋅ 1 +
1
𝛽𝑡

�𝑀"# +
1
𝛽𝑡 )

�𝑀") +⋯ ⋅
1
𝛽𝑡

𝜕A𝑊2 𝜕A "# ⋅ 𝑊2

Convergence region complementary to the 𝛽𝑡 expansion.

�𝑀 = 𝜕A ") ⋅ 𝜕A𝑆 𝜕A

What are the appropriate basis functions to parametrize the kernel at large 𝛽?
--- The above Krylov basis!



Trivializing a local region in 2D (1/3)

• Since the growth of basis functions seems unavoidable,
it should be a good strategy to trivialize a local region, not the entire system.

• As a first step, we trivialize one link in the 2D:
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likeliness of appearance in 𝑈-space = geometrical area in 𝑉-space
(cf. cumulative distribution function)

ℱ=@#
ℱ=@#

• Still, we can update a quarter of the links simultaneously.



We measure the acceptance rate when using the simple Metropolis 
(updates performed locally in parallel; if map is exact, acceptance=100%)
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varying 𝛽

varying step size 𝜖 varying #irrep to include

Trivializing a local region in 2D (2/3)

Systematically improvable!

Larger function space required for larger 𝛽



• Caveat: one link is not sufficient for the tunneling

• How many links would we need to make an instanton?

With four links, one can create an instanton
even when the surrounding links are fixed to 1.

∵ The value of the link is almost determined by the surrounding links

• We should however need a larger trivialization region for large 𝛽.
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Suppose the surrounding links are fixed to 1;

The islands of configurations with nonvanishing probabilities
will be again stretched to form a flat distribution.

(situation similar to a local heat-bath)

then the active link can fluctuate only within the width
determined by the plaquette distribution.

Sd

> config ˢPⁿ
of=- I 8=0 8=1

I

:÷:÷÷÷:>

In this way, the trivializing map can 
make up a global update algorithm
(when having islands with nontrivial topology).

Trivializing a local region in 2D (3/3)

∵ appearance probability of nontrivial topology 
is determined by the topological susceptibility in the 𝑈-space;
there is an obvious volume scaling.

ℱ<=+ℱ<=+



How difficult is enlarging the region? (1/1)

• Time required to obtain the total map

ℒ7 can be symmetrized by a preconditioning (as for the Fokker-Planck Hamiltonian),
but then the treatment of zero-modes becomes tricky especially for multiple DOF.

• Condition number

25/26

1 link trivialization case

∝ #basisl.u

∝ #basisl

Since a matrix representation of ℒ= is sparse, we use, e.g., GMRES for the inversion.

#basis

#basis

unless #basis unnecessarily large

Seemingly pursuable problem! (coding mostly done)



Summary

Outlook

• Include fermion / develop algorithm that is capable of it.

• Towards this goal, there are many technical issues not discussed here:
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- 𝜖 needs to be taken small when including higher irreps to ensure the map is one-to-one
(∵ force can become larger for a kernel with higher windings)
Adaptive step size? Higher order Runge-Kutta?

- Even with the kernels obtained by BiCGStab, 
𝑆788 has a very thin peak at 𝜅 = 𝜋 due to 𝑂(𝜖)) effect,
which migrates to large forces in field-transformed HMC.
Make the target action slightly differ from the flat distribution?

• Using a simple 2D U(1) model, we analyzed (spatially truncated) exact trivializing maps.

- Why the Wilson flow is not so effective.

• We reported the ongoing study partially addressing the points:

- The convergence radius of the flow-time expansion of the flow kernel.

- How many links need to be involved in the map to stimulate the tunneling.

• Study field-transformed HMC with an effective exact trivializing map!

Peter’s talk this morning



Thank you.


