Pion light-cone distribution amplitude from a Heavy-quark OPE

C.-J. David Lin National Yang Ming Chaio Tung University 國立陽明交通大學

Challenges and Opportunities in Lattice QCD Simulations and Related Fields RIKEN RCCS, Kobe 15/02/2023

References

W. Detmold and CJDL, Phys. Rev. **D** 73 (2006) 014501

HOPE Collaboration, W. Detmold et al., Phys. Rev. D 104 (2021) 7, 074511

HOPE Collaboration, W. Detmold et al., Phys. Rev. D 105 (2022) 3, 034506

HOPE Collaboration, W. Detmold *et al.*, arXiv: 2211.17009 (based upon talk presented by R. Perry at Lattice 2022)

Outline

★ General issues: parton physics from Euclidean lattice QCD

★ The HOPE method

***** Pion light-cone distribution amplitude from HOPE

Numerical results of the 2nd moment

Exploratory numerical study of the 4th moment

★ Conclusion and outlook

General issues and introducing the HOPE method

Challenges in parton physics from lattice QCD

Conventional LQCD approach

Conventional LQCD approach

★ Light-cone OPE

$$T[J^{\mu}(x)J^{\nu}(0)] = \sum_{i,n} C_i(x^2, \mu^2) x_{\mu_1} \dots x_{\mu_n} \mathcal{O}_i^{\mu\nu\mu_1\dots\mu_n}(\mu) + \text{higher twists}$$

Twist-2 Mellin moments \Rightarrow parton distribution functions

★ The twist-2 operators

$$\mathcal{O}_{i}^{\nu\mu\mu_{1}...\mu_{n}} = \bar{\psi}\Gamma_{i,\nu}D^{\mu}D^{\mu_{1}}...D^{\mu_{n}}\psi - \text{traces}$$

Issue with computing the Mellin moments

Continuum

Lattice

→ Only the first few moments can be extracted in practice

"Novel" LQCD approach

Parton distribution from lattice QCD through *unphysical* non-local operators

A space-like Wilson line (quasi-PDF and pseudo-PDF) X. Ji, PRL 110 (2013); A. Radyushkin, PRD 96 (2017)

Two currents separated by space-like distance V. Braun and D. Mueller, EPJC 55 (2008)

 Two flavour-changing currents with valence heavy quark (HOPE method)
 W. Detmold and CJDL, PRD 73 (2006)

MoreA. Chambers et al., PRL 118 (2017); Y. Ma & J.-W. Qiu, PRL 120 (2018)...

The HOPE method for higher moments and pion light-cone distribution amplitude (LCDA)

Pion LCDA: definition and OPEs $\langle 0|\bar{d}(z)\gamma_{\mu}\gamma_{5}W[z,-z]u(-z)|\pi^{+}(\mathbf{p})\rangle = ip_{\mu}f_{\pi}\int_{-1}^{1}d\xi \ e^{-i\xi p\cdot z}\phi_{\pi}(\xi,\mu)$ Gegenbauer (conformal) OPE in the isospin limit $\phi_{\pi}(\xi,\mu) = \frac{3}{4}(1-\xi^2) \quad \sum_{n=0}^{\infty} \phi_n(\mu)\mathcal{C}_n^{3/2}(\xi) \xrightarrow{\mu \to \infty} \frac{3}{4}(1-\xi^2)$ n=0.evenGegenbauer moments $\phi_n(\mu) = \frac{2(2n+3)}{3(n+1)(n+2)} \int_{-1}^{1} d\xi \ C_n^{3/2}(\xi) \phi_\pi(\xi,\mu)$ Light-cone OPE $\langle 0 | \left[\overline{d} \gamma^{\{\mu_0} \gamma_5(i \overset{\leftrightarrow}{D}{}^{\mu_1}) \dots (i \overset{\leftrightarrow}{D}{}^{\mu_n\}} \right] u - \text{traces} \right] | \pi^+(\mathbf{p}) \rangle$ $= f_\pi \langle \xi^n \rangle (\mu^2) \left[p^{\mu_0} p^{\mu_1} \dots p^{\mu_n} - \text{traces} \right]$ Mellin moments $\langle \xi^n \rangle(\mu) = \int_{-1}^{1} d\xi \ \xi^n \phi_\pi(\xi,\mu)$ $\phi_0 = \langle \xi^0 \rangle = 1, \ \phi_2 = \frac{i}{12} \left(5 \langle \xi^2 \rangle - \langle \xi^0 \rangle \right), \ \phi_4 = \frac{11}{24} \left(21 \langle \xi^4 \rangle - 14 \langle \xi^2 \rangle + \langle \xi^0 \rangle \right), \dots$

OPE and ξ -dependence

 ξ : the fraction of p_{π} carried by one of the valence quarks (parton limit)

 \star Power divergence already shows up in LQCD calculation for $\langle \xi^2 \rangle$

Phenomenological relevance Pion form factor in QCD exclusive processes

G.P. Lepage and S.J. Brodsky, 1979

Phenomenological relevance

Figure from R.J. Perry et al., PLB 807 (2020) 135581

Phenomenological relevance

Important input for flavour physics

HOPE amplitude for computing pion LCDA

$$V^{\mu\nu}(p,q) = \int d^4z \ e^{iq \cdot z} \left\langle 0 \left| T[J^{\mu}_A(z/2)J^{\nu}_A(-z/2)] \right| \pi(\mathbf{p}) \right\rangle$$
$$J^{\mu}_A = \bar{\Psi}\gamma^{\mu}\gamma^5\psi + \bar{\psi}\gamma^{\mu}\gamma^5\Psi$$
$$\Psi \text{ is the valence, relativistic heavy quark}$$

$$V^{[\mu\nu]}(p,q) = \frac{1}{2} \left[V^{\mu\nu}(p,q) - V^{\nu\mu}(p,q) \right]$$

OPE for HOPE amplitude

HOPE for $V^{[\mu\nu]}$: issue in fitting higher moments

In general, need large **p** to access non-leading moments

Generic issue in HOPE for higher moments

$$\frac{T^{\mu\nu}_{\Psi,\psi}(p,q)}{\text{simulate}} \sim \sum_{n=0}^{\infty} \frac{\langle \xi^n \rangle \omega^n + \text{higher twist, } \omega = \frac{2p \cdot q}{\tilde{Q}^2} = \frac{2\mathbf{p} \cdot \mathbf{q} + 2iE_{\pi}q_4}{q_4^2 + \mathbf{q}^2 + m_{\Psi}^2}$$

★ Need large \tilde{Q}^2 to suppress higher-twist effects $[\sim (\Lambda_{\rm QCD}/\tilde{Q})^m]$ ★ Need large **p** to make $|\omega| \rightarrow 1$ (sensitivity to higher moments)

Strategy for enhancing sensitivity to $\langle \xi^n \rangle$ $V^{[12]}(p,q) = \frac{2\epsilon^{12\alpha\beta}q_{\alpha}p_{\beta}}{\tilde{Q}^{2}} \sum_{n \text{ even}}^{\infty} \frac{\zeta^{n}C_{n}^{2}(\eta)}{2^{n}(n+1)} C_{W}^{(n)}(\tilde{Q}^{2})f_{\pi}\langle\xi^{n}\rangle + \mathcal{O}(1/\tilde{Q}^{3})$ $= \frac{2(q_{3}p_{4} - q_{4}p_{3})}{\tilde{Q}^{2}} \left[C_{W}^{(0)}(\tilde{Q}^{2})f_{\pi} + \frac{6(p \cdot q)^{2} - p^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} C_{W}^{(2)}(\tilde{Q}^{2})f_{\pi}\langle\xi^{2}\rangle + \dots \right] + \mathcal{O}(1/\tilde{Q}^{3})$ $p_{4} = iE_{\pi}$ $(\text{choose } \mathbf{p} \cdot \mathbf{q} \neq 0 \text{ while } p_{3} = 0, q_{3} \neq 0 \text{ and } q_{4} \text{ being real}$ $= \frac{2iq_{3}E_{\pi}}{\tilde{Q}^{2}} \left[C_{W}^{(0)}(\tilde{Q}^{2})f_{\pi} + \frac{6(p \cdot q)^{2} - p^{2}q^{2}}{6(\tilde{Q}^{2})^{2}} C_{W}^{(2)}(\tilde{Q}^{2})f_{\pi}\langle\xi^{2}\rangle + \dots \right] + \mathcal{O}(1/\tilde{Q}^{3})$ imaginary real complex The largest contribution to Re[$V^{[12]}$] is from $\langle \xi^2 \rangle$

Analysis strategy

***** Momentum space $V^{[\mu\nu]}(p,q) \equiv \left[d^4 z \, \mathrm{e}^{iq \cdot z} \, \langle 0 \, | \, T[J^{[\mu}(z/2)J^{\nu]}(-z/2)] \, | \, \pi(\mathbf{p}) \right\rangle$ ★ Time-momentum representation (TMR) ✓ $R^{[\mu\nu]}(\tau;\mathbf{p},\mathbf{q}) = \int dz_4 \, \mathrm{e}^{-iq_4 z_4} \, V^{[\mu\nu]}(p,q)$ $= \left| d^3 \mathbf{z} \, \mathrm{e}^{\mathbf{q} \cdot \mathbf{z}} \left\langle 0 \, | \, T[J^{[\mu}(z/2)J^{\nu]}(-z/2)] \, | \, \pi(\mathbf{p}) \right\rangle \right.$

-> Fourier transform of Wilson coeff numerically

Quenched calculation (a) $M_{\pi} \approx 560 \text{ MeV}$

- Proof-of-principle nature
- 4 lattice spacings: 0.04 to 0.08 fm
- Learn how to control errors
- Good result for $\langle \xi^2 \rangle$
- Reasonable exploratory result for $\langle \xi^4 \rangle$
- 64 Intel KNL nodes

Quenched calculation for $\langle \xi^2 \rangle$ @ $M_{\pi} \approx 560$ MeV

Lattice setting for determining $\langle \xi^2 \rangle$

Wilson plaquette and non-perturbatively improved clover actions

• $\mathbf{p} = (1,0,0) \mathbf{q} = (1/2,0,1)$ in units of $2\pi/L \sim 0.64$ GeV

• $V^{\mu\nu}$ is O(a) improved without improving the axial current

Excited state contamination in $R^{[\mu\nu]}(\tau; \mathbf{p}, \mathbf{q})$

Extracting $\langle \xi^2 \rangle$ from HOPE formula

Lattice artefacts and higher-twist effects in $\langle \xi^2 \rangle (a, m_{\Psi})$

Result for $\langle \xi^2 \rangle$

 $\langle \xi^2 \rangle_{\text{TMR}} (\mu = 2 \text{ GeV}) = 0.210 \pm 0.013 \text{ (stat.)} \pm 0.034 \text{ (sys.)} = 0.210 \pm 0.036$ $\langle \xi^2 \rangle_{\text{Mom}} (\mu = 2 \text{ GeV}) = 0.210 \pm 0.013 \text{ (stat.)} \pm 0.044 \text{ (sys.)} = 0.210 \pm 0.046$

Quenched calculation

 $@ M_{\pi} \approx 560 \,\mathrm{MeV}$

Lattice setting for determining $\langle \xi^4 \rangle$

Wilson plaquette and non-perturbatively improved clover actions

• **p** = (2,0,0) **q** = (1/2,0,1) in units of $2\pi/L \sim 0.64$ GeV

- Variational analysis with pion interpolating operators $\bar{\psi}\gamma_5\psi$ and $\bar{\psi}\gamma_\mu\gamma_5\psi$
- Momentum smearing for pion interpolators

```
G.S. Bali et al., PRD93 (2016) 9, 094515
```

Status of $\langle \xi^4 \rangle$ calculation with GEVP and a "double-ratio" strategy

Work in progress \Rightarrow More data and reduced error

Conclusion and outlook: testing the method

- HOPE method facilitates high-moments calculations
- Numerically well tested via $\langle \xi^2 \rangle$ of $\phi_{\pi}(\xi, \mu)$
- Reasonable exploratory result of $\langle \xi^4 \rangle$ of $\phi_{\pi}(\xi, \mu)$
- Other parton-physics quantities planned for the future
- Direct calculation for ξ -dependence from HOPE HOPE Collaboration, W. Detmold *et al.*, Phys. Rev. **D 104** (2021) 7, 074511

• Full-QCD dynamical calculation for $\phi_{\pi}(\xi, \mu)$ commenced

Pictures from RIKEN RCCS

Backup slide

Introducing the valence heavy quark

★ Valence — Not in the action

★ The "heavy quark" is relativistic

Propagating in both space and time

★ The current for computing the even moments of the PDF

$$J^{\mu}_{\Psi,\psi}(x) = \Psi(x)\gamma^{\mu}\psi(x) + \psi(x)\gamma^{\mu}\Psi(x)$$

Compton tensor $T^{\mu\nu}_{\Psi,\psi}(p,q) \equiv \sum_{S} \langle p,S | t^{\mu\nu}_{\Psi,\psi}(q) | p,S \rangle = \sum_{S} \int d^4x \ e^{iq \cdot x} \langle p,S | T \left[J^{\mu}_{\Psi,\psi}(x) J^{\nu}_{\Psi,\psi}(0) \right] | p,S \rangle$

Strategy for extracting the moments

$$T^{\mu\nu}_{\Psi,\psi}(p,q) \equiv \sum_{S} \langle p,S | t^{\mu\nu}_{\Psi,\psi}(q) | p,S \rangle = \sum_{S} \int d^4x \ e^{iq \cdot x} \langle p,S | T \left[J^{\mu}_{\Psi,\psi}(x) J^{\nu}_{\Psi,\psi}(0) \right] | p,S \rangle$$

simulate
$$J^{\mu}_{\Psi,\psi}(x) = \overline{\Psi}(x) \gamma^{\mu} \psi(x) + \overline{\psi}(x) \gamma^{\mu} \Psi(x)$$

- ★ Simple renormalisation for quark bilinears
- ★ Work with the hierarchy of scales $\Lambda_{QCD} << \sqrt{q^2} \le m_{\Psi} << \frac{1}{a}$ → Heavy scales for short-distance OPE → Avoid branch point in Minkowski space $at (q+p)^2 \sim (m_N + m_{\Psi})^2$
- ★ Extrapolate to the continuum limit
 → Match to the short-distance OPE results
 → Extract the moments without power divergence

Enhancing the signal: the need

We work with
$$|\omega| = \left|\frac{2p \cdot q^2}{\tilde{Q}}\right| < 1$$

Leading contribution in ${\rm Im}[V^{12}]$ is ${\sim}\langle\xi^0\rangle$

Leading contribution in Re[V^{12}] is $\sim \langle \xi^2 \rangle \omega^2$ Much noisier compared to Im[V^{12}]

Enhancing the signal: the idea

We work with $|\omega| < 1$ where Minkowskian $V^{\mu\nu}$ is imaginary.

From
$$V_{\text{Minkowski}}^{\mu\nu}(p,q) = \int_{-\infty}^{\infty} d\tau \ e^{-q_0 \tau} R^{\mu\nu}(\tau;\mathbf{p},\mathbf{q}).$$

 $\longrightarrow R^{\mu\nu}$ is imaginary.

Back to Euclidean space:

$$\operatorname{Re}[U^{\mu\nu}(\mathbf{p},q)] = \operatorname{Re}\left[\int_{-\infty}^{\infty} d\tau \ R^{\mu\nu}(\tau;\mathbf{p},\mathbf{q})e^{-iq_{4}\tau}\right]$$

$$\propto \int_{0}^{\infty} d\tau \ [R^{\mu\nu}(\tau;\mathbf{p},\mathbf{q}) - R^{\mu\nu}(-\tau;\mathbf{p},\mathbf{q})]\sin(q_{4}\tau)$$

$$\gamma_{5} \text{ hermiticity} = R^{\mu\nu}(\tau;\mathbf{p},\mathbf{q}) + R^{\mu\nu}(\tau;-\mathbf{p},\mathbf{q})$$
More correlated reduced error

Enhancing the signal: the result

The "double ratio" method

 \star Propagation of the excited states depends only on $\tau_e + \tau_m$

$$C_3^{\mu\nu}(\tau_e,\tau_m;\mathbf{p}_e,\mathbf{p}_m) = R^{\mu\nu}(\tau_e-\tau_m;\mathbf{p},\mathbf{q})\frac{Z_{\pi}(\mathbf{p})}{2E_{\pi}(\mathbf{p})}e^{-\mathbf{E}_{\pi}(\mathbf{p})(\tau_e+\tau_m)/2},$$

 \star Construct the ratio

$$\mathcal{R} = \frac{C_3^{\mu\nu}(\tau_e - 1, \tau_m + 1; \mathbf{p}_e, \mathbf{p}_m)}{C_3^{\mu\nu}(\tau_e, \tau_m; \mathbf{p}_e, \mathbf{p}_m)} = \frac{R^{\mu\nu}(\tau_e - \tau_m - 2; \mathbf{p}, \mathbf{q})}{R^{\mu\nu}(\tau_e - \tau_m; \mathbf{p}, \mathbf{q})} \left[1 + \dots\right]$$

No need for two-point function
No need for renormalisation

Excited-state contamination for $\mathbf{p} = (2,0,0)$

