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General issues and introducing the HOPE method



Challenges in parton physics from lattice QCD

…
…
…
…
…
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Euclidean

Non-perturbative QCD dynamics on the light cone Euclidean



Conventional LQCD approach

q̄ q

P P
hadron state

q̄ q

P P
hadron state

nμ = (1,0,0,1)

light-cone operator product expansion

twist = dim - spin 
twist-2 Mellin moments



Conventional LQCD approach

Light-cone OPE 

Twist-2 Mellin moments  parton distribution functions⇒

 + higher twistsT[Jμ(x)Jν(0)] = ∑
i,n

Ci(x2, μ2) xμ1
…xμn

 𝒪μνμ1…μn
i (μ)

The twist-2 operators

 traces𝒪νμμ1…μn
i = ψ̄Γi,νDμDμ1…Dμnψ −



Issue with computing the Mellin moments
Continuum

Twist = Dim - Spin
SU(2) symmetry

Lattice

Octahedral symmetry
Spin

Operator mixing under renormalisation, power ( ) divergence1/an

Only the first few moments can be extracted in practice



“Novel” LQCD approach

q̄ q

P P
hadron state

nμ = (1,0,0,1)

Perturbation theory

q̄ q

P P
hadron state



Parton distribution from lattice QCD
through unphysical non-local operators

q̄ q

P P
hadron state

q̄ q

P P
hadron state

A space-like Wilson line (quasi-PDF and pseudo-PDF) 

Two currents separated by space-like distance 

Two flavour-changing currents with valence heavy quark

X. Ji, PRL 110 (2013); A. Radyushkin, PRD 96 (2017)

V. Braun and D. Mueller, EPJC 55 (2008)

W. Detmold and CJDL, PRD 73 (2006)

A. Chambers et al., PRL 118 (2017); Y. Ma & J.-W. Qiu, PRL 120 (2018)… 

(HOPE method)

More



The HOPE method for higher moments  
and  

pion light-cone distribution amplitude (LCDA) 



Pion LCDA: definition and OPEs 
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OPE. C-parity imposes the constraint �⇡(⇠, µ) = �⇡(�⇠, µ) in the isospin limit, leading to

�⇡(⇠, µ) =
3

4
(1 � ⇠

2)
1X

n=0,even

�n(µ)C3/2
n (⇠) , (2)

where C
3/2
n (⇠) are the Gegenbauer polynomials, with C

3/2
0 (⇠) = 1 and C

3/2
2 (⇠) = (�3 + 15⇠

2)/2. The Gegenbauer
moments, �n(µ), are defined as

�n(µ) =
2(2n + 3)

3(n + 1)(n + 2)

Z 1

�1
d⇠ C

3/2
n (⇠)�⇡(⇠, µ) . (3)

Because of conformal symmetry, the �n(µ) do not mix under the renormalization group (RG) evolution at one loop.
To this order, their renormalization scale dependence is [30]

�n(µ2) = �n(µ1)

✓
↵s(µ2)

↵s(µ1)

◆�n/�0

, (4)
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Since �n increases monotonically with n, one expects that a truncated version of the OPE in Eq. (2) can be a good
approximation to �⇡(⇠, µ) at large enough renormalization scales. In the regime where µ � ⇤QCD (with ⇤QCD being
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and the traces are taken in all possible pairs amongst the Lorentz indices, µ0, µ1, . . . , µn. As discussed in the last
paragraph, from the leading-order result of QCD perturbation theory, it is natural to expect that knowledge of the
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FIG. 1. Dependence of �(2)
⇡ (⇠, µ), defined in Eq. (11), on the values of h⇠

2
i. The range of h⇠

2
i values shown in the plot covers

typical results for this second Mellin moment at µ ⇠ 2 GeV from modern lattice computations. They lead to consistency with
a single-humped or double-humped structure of the DA, and more precise measurements would resolve this.

obtaining important information about the LCDA at µ � ⇤QCD is possible from the first few Mellin moments3. This
point can be illustrated by investigating an extreme scenario where one truncates the Gegenbauer OPE in Eq. (2) at

n = 2. The pion LCDA constructed with this truncated OPE is denoted �
(2)
⇡ (⇠, µ). Using Eq. (8), one obtains

�
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⇡ (⇠, µ) =
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Figure 1 shows the result with �
(2)
⇡ (⇠, µ) at h⇠

2
i(µ) = 0.2, 0.25 and 0.3. Note that these are typical values for this

second Mellin moment at µ ⇠ 2 GeV from modern lattice computations [9–11, 32, 33]. This figure demonstrates that
the shape of the pion LCDA can depend strongly upon h⇠

2
i(µ). Naturally, the inclusion of higher moments will likely

reduce the sensitivity to the second moment, but nevertheless, this exercise shows that the second Mellin moment is
a phenomenologically interesting quantity.

III. STRATEGY AND CORRELATION FUNCTIONS

To present the calculation for the second Mellin and Gegenbauer moments of �⇡(⇠, µ), it is first necessary to describe
the strategy and the correlators that have to be computed using LQCD. To extract moments for the pion LCDA
employing the HOPE method, the hadronic amplitudes

V
[µ⌫](q, p) ⌘

V
µ⌫(q, p) � V

⌫µ(q, p)

2
, (12)

are computed, where

V
µ⌫(q, p) =

Z
d
4
z eiq·z h0|T {J

µ
A(z/2)J⌫

A(�z/2)}|⇡(p)i , (13)

3 The qualitative feature of low-moment dominance in �⇡ was also argued using QCD sum rules [31].

Power divergence already shows up in LQCD calculation for  ⟨ξ2⟩
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Pion form factor in QCD exclusive processes

Fπ(Q2) = f 2
π ∫

1

0
dxdy ϕπ(x, Q2) TH(x, y, Q2) ϕπ(y, Q2)

=
16παs(Q2)

Q2
f 2
π ∫
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−1
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G.P. Lepage and S.J. Brodsky, 1979
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FIG. 1. (a) The general structure of the proton's magnetic form factor at large Q . (b) Soft (infrared) interactions be-
tween color-singlet hadrons cancel.

to quark line (via gluons) in T„. This justifies
our use of perturbation theory in computing ~„,
since all internal propagators in the Born dia-
grams must then be off shell by O(Q'). Further-
more, the most important dynamical feature of
the form factor—its power-law falloff—can then
be traced to the behavior of TH, which falls for
increasing Q with a factor [n,(Q )/Q ] for each
constituent, after the first, scattered from the
incident to the final direction' . i. e. ,

(y 2 )2T.(x..&„Q)= "'. '~ T(x„&,)[1+« .(Q2))],
(1.2)

where &,(Q ) =(4v/P)(lnQ2/A2) ' is the running
coupling constant.
R is now clear that nonvalence Pock states in

the proton cannot contribute since all such states
contain four or more constituents, each of which
must be turned to the final direction. Thus T~ for
these states falls as [&,(Q )/Q ] or faster and is
negligible relative to (1.2) as Q -~. [This obser-
vation, while strictly true in light-cone gauge
(2) '2 =A =0), has a different interpretation in
covariant gauges-see Appendix C.] Thus non-
valence ("sea") quarks and gluons in the proton
do not contribute.
The "quark distribution amplitude" P(x„Q) is

the amplitude for converting the proton into three
valence quarks. The quarks each carry some
fraction

k', ko+ k'"' p' p' +p'

of the proton's longitudinal momentum and are all
collinear up to scale Q. In light-cone gauge, Q
is simply related to the hadronic wave function.

3rQ ~~,
p(x), Q)cc j d k).;0 k)., ~)I)(x), k).,) .

4 j=2

(To be precise, |)) is the Fourier transform of the
positive-energy projection of the usual Bethe-
Salpeter wave function evaluated at relative light-
cone "times" z'=z +z =0.) This amplitude is
obviously process independent. 1t contains the
essential physics of that part of the hadronic wave
function which affects exclusive processes with
large momentum transfer. The distribution amp-
litude is only weakly dependent on Q, and this
dependence is completely specified by an evolution
equation of the form (in leading order)

a c.,(Q')Q',
Q
y(x„Q)=;, [dj]) (x„y,)y(y„Q),

(1.4)
where V can be computed from a single-gluon-
exchange kernel. The general solution of this
equation is

Q2') ~n

A]
Combining this expansion with Eqs. (1.1) and
(1.2), we obtain the general form of G„:

G„{Q')= '
g l Qb l(ln ~T) „c6)

The factorized form of Eq. (1.1) implies a sim-
ple space-time picture. The exchange of large
transverse momentum in the hard-scattering am-
plitude T& occurs only when the relative separation
of the constituents approaches the light cone-i. e. ,
-(z ' —z'~') -(zI.' - zY') -O(1/Q ). The distribu-
tion amplitude P is the probability amplitude for

TH(x, y, Q2)

x y

1 − x 1 − y

ϕπ(x, Q2) ϕπ(y, Q2)

q2 = − Q2
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Fig. 1. Current measurements of the pion’s electromagnetic form factor Fπ (Q 2), 
multiplied by the photon virtuality. The upper dashed curve constitutes a monopole 
parameterization based on fitting the low energy data to a monopole shape, as pre-
dicted by vector meson dominance (VMD) models. Two versions of the prediction 
of Lepage and Brodsky are shown: the lowest curve corresponds to the true asymp-
totic prediction given in Eq. (1), while the central curve is the result of incorporating 
a non-asymptotic form of the pion’s light cone distribution amplitude utilizing the 
results of Ref. [5].

prediction [5]. However, the theory still appears to underestimate 
the form factor [5]. It is therefore of interest to examine other pos-
sible reasons for this difference.

Currently, the high virtuality data for the pion form factor is ob-
tained from pion electroproduction. This approach has previously 
been criticized for a number of reasons.

Firstly, others have argued that the object truly measured 
in pion electroproduction is the transition amplitude between a 
mesonic state with an effective space-like mass t < 0 and the phys-
ical pion [6]. It has been argued that this transition amplitude may 
be larger than the physical pion form factor [6].

Secondly, there have been questions raised about the particu-
lar theoretical model known as the Vanderhaeghen, Guidal and 
Laget Regge Model (VGL Model) [7,8] utilized in the analysis [9]. 
In particular, the method by which gauge invariance is imposed on 
the amplitude appears unnatural. The method amounts to requir-
ing that the pion’s electromagnetic form factor Fπ (Q 2) and the 
proton’s Dirac form factor F p

1 (Q 2) are equal. Recently, the extrac-
tion method used in the most recent measurement was applied 
to a toy model of electroproduction to further investigate the effi-
cacy of the approach. It was found that the VGL Model led to the 
overextraction of the toy form factor, suggesting that the measured 
form factor data may be overestimated [9]. This study utilized a 
rather simple model of electroproduction and thus questions may 
be raised about the size of any observed effects. However, the 
trend towards less accurate measurements of the pion form fac-
tor at higher Q 2 is important to understand, especially with the 
planned new set of measurements at Jefferson Laboratory of the 
pion’s electromagnetic form factor at higher photon virtuality than 
ever before [10].

In this paper, we propose a modified version of the VGL Model, 
which we term the Gauge Improved VGL Model. By modifying 
the way gauge invariance is imposed on the amplitude, we no 
longer need to require that the pion and proton form factors are 
equal. To do this, we begin by introducing the conventions fol-
lowed throughout this paper. We then explain our modified VGL 
Model, before reanalyzing the experimental data.

2. Kinematics and preliminaries

We focus on describing the reduced 2 → 2 scattering amplitude 
p(p1) + γ ∗(q) → n(p2) + π(pπ ). We introduce conventional Man-
delstam variables for this process, and we define Q 2 = −q2 so that 

Fig. 2. Born Term Model for pion electro-production. The pion form factor is mea-
sured in pion electroproduction via the t-channel diagram. There is no u channel 
diagram because in our effective field theory, the neutron is neutral at tree level.

the photon’s spacelike momenta is positive. These three momenta 
(Q 2, the proton-photon invariant mass W = √

s and t) allow one 
to fully describe the cross section. The unpolarized differential 
cross section may be separated according to the polarization states 
of the virtual photon into transverse (T ), longitudinal (L) polariza-
tions, as well as two interference terms (LT and T T ) [11]:

(2π)
d2σ

dtdφ
= dσT

dt
+ ε

dσL

dt

+
√

2ε(ε + 1)
dσLT

dt
cosφ + ε

dσT T

dt
cos 2φ,

(6)

where ε is a measure of the virtual photon polarization [11,12]. 
The t-channel pion exchange diagram dominates the longitudinal 
differential cross section dσL/dt [13]. It is this structure function 
which we aim to describe effectively. Details on the relationship 
between the invariant matrix element iMµ we derive for this pro-
cess and the cross section can be found in Ref. [14].

3. The Born Term Model and the VGL Model

Either the pseudo-vector or pseudo-scalar realizations of pion-
nucleon effective field theory may be used since for this process 
both may be shown to give the same matrix element. More discus-
sion of these Lagrangians and their corresponding Feynman rules 
may be found in Ref. [15]. The Born Term Model is defined by the 
tree level diagrams, which are shown in Fig. 2.

The VGL Model is a Regge Model. One may understand the 
Reggeization of the amplitude as the multiplication of the Born 
Term Model by the ratio of the reggeized propagator to the Born 
Term Model propagator. The structure of the pion is further incor-
porated by multiplying this amplitude by an overall factor of the 
pion form factor Fπ (Q 2). That is

iMµ
VGL = Fπ (Q 2)Dπ−1

F (pt)Dπ
R (pt)

[
iMµ

BTM

]
. (7)

Introducing these terms as overall multiplicative factors is mo-
tivated by gauge invariance arguments [7,9]. This ‘factorization’ of 
the pion form factor is rather unnatural. One may view this as a 
model assumption that the pion and proton form factors are equal:

Fπ (Q 2) ≈
VGL

F p
1 (Q 2) . (8)

Of course, at the pion pole this introduces no error, however the 
data is some distance from the pole. The purpose of this paper 
is to discuss a method by which we may implement structure at 
the pion electromagnetic vertex in a way consistent with gauge 
invariance, without being required to modify the proton’s electro-
magnetic vertex.

4. The Gauge Improved VGL Model

4.1. Pion electroproduction vertex

In pion electroproduction the most general form of the pion-
photon vertex will take the form

VMD

SDE (Chang et al., 2013)

asympt.

Figure from R.J. Perry et al., PLB 807 (2020) 135581
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Important input for flavour physics
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i
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Figure 1: Graphical representation of the factorization formula. Only one of the two
form-factor terms in (4) is shown for simplicity.

an operator Oi in the weak effective Hamiltonian is given by

〈M1M2|Oi|B̄〉 =
∑

j

F B→M1
j (m2

2)
∫ 1

0
du T I

ij(u) ΦM2(u) + (M1 ↔ M2)

+
∫ 1

0
dξdudv T II

i (ξ, u, v) ΦB(ξ) ΦM1(v) ΦM2(u)

if M1 and M2 are both light, (4)

〈M1M2|Oi|B̄〉 =
∑

j

F B→M1
j (m2

2)
∫ 1

0
du T I

ij(u) ΦM2(u)

if M1 is heavy and M2 is light.

Here F
B→M1,2

j (m2
2,1) denotes a B → M1,2 form factor, and ΦX(u) is the light-cone

distribution amplitude for the quark-antiquark Fock state of meson X. These non-
perturbative quantities will be defined precisely in the next subsection. T I

ij(u) and
T II

i (ξ, u, v) are hard-scattering functions, which are perturbatively calculable. The
hard-scattering kernels and light-cone distribution amplitudes depend on a factoriza-
tion scale and scheme, which is suppressed in the notation of (4). Finally, m1,2 denote
the light meson masses. Eq. (4) is represented graphically in Fig. 1. (The second
line of the first equation in (4) is somewhat simplified and may require including an
integration over transverse momentum in the B meson starting from order α2

s , see
the remarks after (12).)

As it stands, the first equation in (4) applies to decays into two light mesons, for
which the spectator quark in the B meson (in the following simply referred to as the
“spectator quark”) can go to either of the final-state mesons. An example is the decay
B− → π0K−. If the spectator quark can go only to one of the final-state mesons, as
for example in B̄d → π+K−, we call this meson M1 and the second form-factor term
on the right-hand side of (4) is absent.

The factorization formula simplifies when the spectator quark goes to a heavy
meson (second equation in (4)), such as in B̄d → D+π−. In this case the third term
on the right-hand side of (4), which accounts for hard interactions with the spectator

6
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FIG. 5: Extraction of moments of meson distribution amplitudes. Here, the light-shaded circle denotes the pion interpolating
operator and the dark circle and dark square indicate the vector and axial-vector currents, respectively.

In this case, choosing MΨ = 2.1 GeV, q0 = 1.98 GeV and Q2 = −3.85 GeV2 which gives the flatter behaviour shown
in the RHS of Fig. 4 may be more appropriate. Without performing the large scale simulations that are required to
determine the Compton amplitude, it is hard to be definite on the choices of parameters. However, it seems that this
approach has significant potential to determine higher moments of isovector parton distributions than are currently
available from QCD.

IV. DISTRIBUTION AMPLITUDES FROM CURRENT-CURRENT MATRIX ELEMENTS

A further application of the approach we have outlined is in computing moments of meson distribution amplitudes,
φM . In the lattice approach, we can extract moments of distribution amplitudes in the same way as DIS determines
moments of parton distributions; for example, we may study the matrix element 〈π±|T [V µ

Ψ,ψ(x)Aν
Ψ,ψ(0)]|0〉, where

V µ
Ψ,ψ and Aµ

Ψ,ψ are fictitious vector and axial vector heavy-light currents. This process is described by the tensor

Sµν
Ψ,ψ(p, q) =

∫
d4x ei q·x〈π+(p)|T [V µ

Ψ,ψ(x)Aν
Ψ,ψ(0)]|0〉 . (23)

Following from Eq.(9), the OPE of the two currents leads to the same matrix elements of twist-two operators that
determine the moments of the pion distribution amplitude:

〈π+(p)|ψγ{µ1γ5(i D)µ2 . . . (i D)µn}ψ|0〉 = fπ〈ξ
n−1〉π [pµ1 . . . pµn − traces] , (24)

where

〈ξn〉π ≡

∫ 1

0
dξ ξnφπ(ξ) . (25)

These matrix elements can be determined by studying the various components of Sµν
Ψ,ψ for varying mΨ and qµ

analogously to Eq. (14). As in the DIS case, many higher-twist contributions are absent because of the valence nature
heavy quark and the problems that plague direct evaluation of higher moments due to the lattice cutoff are eliminated.
Since only the zeroth (decay constant) and second moments of the pion distribution amplitude have been investigated
in the direct approach [51, 52, 53, 54, 55, 56], any information on higher moments will be useful in constraining the
distribution amplitude from QCD. For flavour non-diagonal mesons (e.g. π±, K±,0), extraction of the tensor Sµν

Ψ,ψ on
the lattice only requires the computation of the Wick contraction shown in Fig. 5.

V. SUMMARY

To summarise, the direct study of Compton scattering tensor on the lattice using the operator product expansion
can provide useful information on the moments of quark distributions. Using currents that couple an unphysical,
quenched, heavy quark field to the physical light quarks renders the approach feasible without modifying the non-
perturbative physics that can be extracted. This has the potential that a large enough number of moments can
be extracted that the parton distributions can be reliably reconstructed from lattice calculations. Our analysis has
focused on the unpolarised isovector quark distribution, but it can also be used to study the other twist-two and twist-
three parton distributions and generalised parton distributions. Additionally, this method will allow computations of
the moments of meson distribution amplitudes where even the lowest non-trivial moment is not known reliably from
the lattice.
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involves a determination of the Mellin moments of the
LCDA [3, 4]. These are defined by
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d⇠ ⇠n�(⇠, µ2), (3)

where ⇠ = 2x� 1 and x is the momentum fraction of the
collinear quark anti-quark pair. Noting again the isospin
symmetry x $ (1�x) we see that only the even moments
may be non-zero for the pion. These moments may be
related to local matrix elements which are immediately
amenable to a lattice calculation. It is possible to write
the full distribution amplitude with the knowledge of the
Mellin moments alone:
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Unfortunately, the breaking of the full rotation group
on the lattice leads to operator mixing and thus power
divergences appear in twist-2 operators with spin higher
than four [5]. These power divergences make the determi-
nation of the higher moments more di�cult. Neverthe-
less, this approach has been well studied and has yielded
results for the first non-trivial moment of the pion and
kaon [6, 7]. A number of other proposals in the literature
seek to overcome this di�culty [8–28].

While much good work has been done in the extrac-
tion of the pion LCDA, it is clear that more must still
be done to acquire precise predictions of this object.
With this view, it is clearly of interest to explore other
proposals for the calculation of the distribution ampli-
tude. One such approach, which we pursue in this work
is the so-called heavy quark operator product expansion
(HOPE) [29, 30]. The HOPE method builds on the con-
ventional operator product expansion (OPE) approach,
by performing the numerical simulation with a fictitious
heavy quark species, which leads to a number of advan-
tages over the standard treatment [29]. This method al-
lows the extraction of the Mellin moments of the LCDA,
and thus in principle allows the reconstruction of the am-
plitude within a wide range of x. In this paper, we dis-
cuss the application of the HOPE method to the pion’s
LCDA. In particular, we discuss kinematic choices which
lead to an e�cient extraction of the second Mellin mo-
ment, and discuss the resulting preliminary extraction of
the second Mellin moment.

II. SUMMARY OF THE CALCULATION

The HOPE method is a multi-step procedure. Thus,
before beginning our discussion of the kinematics used
and the numerical study we performed, we provide an
overview of the calculation. The starting point of this
work is a study of the anti-symmetric version of the ma-
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where the axial-vector current is replaced by the heavy-
light flavour changing current:
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A =  ̄�µ�5 +  ̄�µ�5 , (7)

with  being the light quark field, and  being the heavy
quark field. We note that it is also possible to study the
LCDA Mellin moments using the corresponding heavy-
light vector current. By applying the OPE to the above
matrix element, we can show [30] that to leading twist,
the antisymmetric tensor Uµ⌫(p, q) may be written in the
isospin limit as1
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where f⇡ ⇡ 0.132 GeV is the pion decay constant, Q̃, ⌘
and ⇣ are kinematic variables given by

Q̃2 = �q2 �m2
 , (9)

⌘ =
p · qp
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⇣ =
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C(n)
W are the Wilson coe�cients, and C

2
n(⌘) are the Gegen-

bauer polynomials, which arise as a result of resumming
target mass e↵ects [31, 32].
In order to accurately extract the Mellin moments, one

needs to determine the Wilson coe�cients beyond zeroth
order. Since these Wilson coe�cients only account for
the ultraviolet e↵ects of QCD, they may be calculated
using perturbation theory. The Wilson coe�cients may
be written

C(n)
W (Q̃2) = 1 + ↵sc

(1)
n + . . . . (12)

1
Note that Ref. [30], uses a normalization for the Mellin mo-

ments which di↵ers by a factor of 2
n
from our convention. Ours

agrees with the ‘standard’ normalization which allows us to di-

rectly compare our result with other determinations of the second

Mellin moment.
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3

By calculating the matrix element Tµ⌫(p, q) on the lat-
tice, one may then perform a fit to the form of the heavy
quark OPE, and thus obtain the Mellin moments of the
distribution amplitude. We note that when computing
the hadronic tensor, kinematics should be chosen such
that we remain in the unphysical region. This requires
choosing

(p+ q)2 < m2
hl ⇡ (m + ⇤QCD), (13)

where mhl is the mass of the lightest heavy-light me-
son. This ensures that the analytic continuuation to
Minkowski space is may be straightforwardly obtained
by the replacement q4 ! iq0. Thus this method is con-
strained to work in the window

⇤QCD ⌧

p
q2 < m ⌧

1

a
(14)

By performing the calculation at a number of lattice spac-
ings, one may then extrapolate to the continuum in the
usual way [33].

A. E�cient Kinematics for an Extraction of the
Second Mellin Moment

In this work, we are primarily interested in an extrac-
tion of the second Mellin moment of the pion’s LCDA.
From Eqn. 8, it is possible to see that the nth moment is
weighted by the kinematical factor

C
2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)⇣n. (15)

For this section, we shall assume that the Wilson coe�-
cients are unity. This results inO(↵S) errors, but will not
e↵ect the features discussed here. We define the weight
function

W (n) =
C
2
n(⌘)

2n(n+ 1)
⇣n. (16)

This weighting factor is the origin of the di�culty in ex-
tracting the higher moments in OPE approaches. For
example in our numerical work we fix the physical size of
the system to be L ⇥ a = 1.92 fm for all choices of the
lattice spacing, a. Thus the smallest unit of momentum
is

�p =
2⇡

La
= 0.64 GeV, (17)

with the pion at rest p = (0, 0, 0) ⇥ 0.64 GeV and the
current insertion momentum q = (0, 0, 1) ⇥ 0.64 GeV
with m⇡ = 0.56 GeV and m = 2.7 GeV, we find when
scanning over q4

max[W (0), q4] = 1 (18)

max[W (2), q4] = 0.008, (19)

p�=(0,0,0), q�=(0,0,1)

p�=(1,0,0), q�=( 1
2
,0,1)

p�=(4,0,0), q�=(2,0,1)
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FIG. 1. We demonstrate the suppression factor obtained from
the kinematic weight function W (n) for several di↵erent kine-
matic choices. We examine the combinations p = (0, 0, 0),
q = (0, 0, 1) (blue circles), p = (1, 0, 0), q = (1/2, 0, 1) (earth
squares) and p = (4, 0, 0), q = (2, 0, 1) (garnet diamonds),
where all momenta should be multiplied by 0.64 GeV to deter-
mine their physical values. As we explain, in the case where
p · q 6= 0, the weighting function will be complex. Since
p · q = 0 for the kinematic choice described by the blue cir-
cles, there is no imaginary part, and we thus exclude those
points from the lower plot for clarity.

with higher moments further suppressed. Under nor-
mal circumstances, an extraction of even the first non-
trivial (ie, the second) moment with this particular choice
of kinematics would be a challenging task. Note how-
ever that by changing the kinematics, one may reduce
the kinematic suppression. This fact is demonstrated in
Fig. 1, where a number of di↵erent choices of kinemat-
ics are shown. We note that in general the extraction of
higher Mellin moments requires higher pion momentum,
which poses a challenge for numerical determinations.

Since we wish to numerically simulate the Compton
tensor so that we may determine the second Mellin mo-
ment, it is advantageous to explore our kinematic op-
tions to best optimize the desired signal. In particular,
by studying the properties of this weight function, we
can determine kinematics which allow us direct access
to the second Mellin moment, somewhat bypassing the
kinematical suppression.
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In general, need large p to access non-leading moments

 GeV,  GeVmπ = 0.56 mΨ = 2.7

1

V [µ⌫](p, q) =
2✏µ⌫↵�q↵p�

Q̃2

1X

n even

⇣nC2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)f⇡h⇠
n
i+O(1/Q̃3) (1)

Q̃2 = q2 +m2
 (2)

V [µ⌫](p, q) =
2✏µ⌫↵�q↵p�

Q̃2

1X

n even

⇣nC2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)f⇡h⇠
n
i+O(1/Q̃3)

=
2✏µ⌫↵�q↵p�

Q̃2

1X

n even

W (n)C(n)
W (Q̃2)f⇡h⇠

n
i+O(1/Q̃3) (3)

V [12](p, q) =
2✏12↵�q↵p�

Q̃2

1X

n even

⇣nC2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)f⇡h⇠
n
i+O(1/Q̃3)

=
2(q3p4 � q4p3)

Q̃2


C(0)

W (Q̃2)f⇡ +
6(p · q)2 � p2q2

6(Q̃2)2
C(2)

W (Q̃2)f⇡h⇠
2
i+ . . .

�
+O(1/Q̃3)

=
2iq3E⇡

Q̃2


C(0)

W (Q̃2)f⇡ +
6(p · q)2 � p2q2

6(Q̃2)2
C(2)

W (Q̃2)f⇡h⇠
2
i+ . . .

�
+O(1/Q̃3) (4)

a (fm) L̂3
⇥ T̂ Nconfig Nsrc

0.081 243 ⇥ 48 650 2

0.060 323 ⇥ 64 450 3

0.048 403 ⇥ 80 250 3

0.041 483 ⇥ 96 341 3

bare m fitted m 
1.0 GeV 2.0 GeV

1.6 GeV 2.6 GeV

2.5 GeV 3.3 GeV

V [12](p, q) =
2iq3E⇡

Q̃2


C(0)

W (Q̃2)f⇡ +
6(p · q)2 � p2q2

6(Q̃2)2
C(2)

W (Q̃2)f⇡h⇠
2
i+ . . .

�
+O(1/Q̃3) (5)
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Generic issue in HOPE for higher moments
Analytic Continuation

I Physical pion has p4 = iE⇡(p), we choose q4 real.
I In general, this choice leads to complex !:

! =
2p · q

Q̃2
=

2p · q
q2

4 + q2 + m2
Q

+
2iE⇡q4

q2
4 + q2 + m2

Q

(12)

!

Re{!}

Im{!}

�1 1

I Complex ! ensures we avoid physical region of amplitude. No
complication from on-shell states propagating between currents.
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Need large  to suppress higher-twist effects [ ]Q̃2 ∼ (ΛQCD/Q̃)m

Need large p to make  (sensitivity to higher moments)|ω | → 1

,   Tμν
Ψ,ψ(p, q) ∼

∞

∑
n=0

⟨ξn⟩ωn + higher twist ω =
2p ⋅ q

Q̃2
=

2p ⋅ q + 2iEπq4

q2
4 + q2 + m2

Ψsimulate fit

Same as other approaches



Strategy for enhancing sensitivity to ⟨ξn⟩

choose p q 0 while =0,  and  being real⋅ ≠ p3 q3 ≠ 0 q4

imaginary real complex
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The largest contribution to Re[ ] is from V[12] ⟨ξ2⟩

p4 = iEπ



Analysis strategy

V[μν](p, q) ≡ ∫ d4z eiq⋅z ⟨0 |T[J[μ(z /2)Jν](−z /2)] |π(p)⟩

Momentum space

Time-momentum representation (TMR)

Fourier transform of Wilson coeff numerically

R[μν](τ; p, q) = ∫ dz4 e−iq4z4 V[μν](p, q)

= ∫ d3z eq⋅z ⟨0 |T[J[μ(z /2)Jν](−z /2)] |π(p)⟩



Quenched calculation @  MeVMπ ≈ 560

4 lattice spacings: 0.04 to 0.08 fm

Learn how to control errors

Good result for ⟨ξ2⟩

Reasonable exploratory result for ⟨ξ4⟩

64 Intel KNL nodes

Proof-of-principle nature



Quenched calculation for  @  MeV⟨ξ2⟩ Mπ ≈ 560



Lattice setting for determining ⟨ξ2⟩

p = (1,0,0) q = (1/2,0,1) in units of GeV2π/L ∼ 0.64
 is  improved without improving the axial currentVμν O(a)

Wilson plaquette and non-perturbatively improved clover actions 10
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FIG. 4. The four lattice spacings and the heavy quark masses used. The plot shows the trade-o↵ between discretization e↵ects
(which can depend on (am )2) and higher-twist e↵ects (which scale as 1/m ). At fixed lattice spacing, one can decrease the
higher twist e↵ects at the cost of increasing discretization errors, and the available trade-o↵s at the four lattice spacings studied
here are shown by the blue curves. The coloured points show the masses actually used in this study. The black dashed line at
am = 1.05 shows the cuto↵ beyond which discretization e↵ects were no longer found to be well controlled, and the gray line
at am = 0.7 shows a more conservative threshold used for analysing systematic errors arising from lattice artifacts.

D. Choice of Kinematics

The heavy-quark OPE is given by

V
[µ⌫] = �

2if⇡"µ⌫⇢�q
⇢
p
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(0)
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2
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2
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p
2
q
2

6(p · q)2

◆
C

(2)
W + · · · + O

✓
⇤QCD

Q̃

◆�
, (34)

where p is the momentum of the incoming pion and q is the di↵erence in momenta between the two outgoing currents,
and where the ellipsis represents the contributions of higher moments that are negligibly small in this analysis. The
exact form of the higher-twist e↵ects suppressed by ⇤/Q̃ is not known, but symmetries (see Appendix A1) constrain
it to be proportional to "µ⌫⇢�q

⇢
p
�.

In order to enhance the contribution of the second moment, one would like its prefactor to be as large as possible.
However, Q̃

2 must be large to suppress higher twist e↵ects, and p is limited by noise that grows exponentially with
the pion energy on the lattice. In this work, p̂ ⌘

p
2⇡/L was constrained to be one unit of momentum, which for

the volumes used in this work corresponds to |p| = 640 MeV. At these kinematics, the second moment is a small
contribution to the hadronic tensor. As such, it is desirable to isolate its e↵ect from the much larger contribution
of the zeroth moment. In this study, the axial current indices are fixed to be µ = 1, ⌫ = 2, the prefactor on the
right-hand side of Eq. (34) becomes

i"µ⌫⇢�q
⇢
p
� = i

�
q
0
p
3

� p
0
q
3
�

= �q
4
p
3

� iE⇡q
3
. (35)

If the kinematics are chosen such that p
3 = 0, then this prefactor is purely imaginary. At tree level, the entire

contribution of the zeroth moment will be pure imaginary as well. However, p ·q = iE⇡q
4
�p ·q is generically complex

(as long as p · q 6= 0), so the contribution of the second moment to the hadronic tensor will have nonzero real part.
The e↵ect of these special kinematics is shown in Fig. 5. This work met these criteria by choosing

p̂ = (1, 0, 0) and q̂ = (1/2, 0, 1) (36)

in units of 2⇡/L, as well as all combinations of p̂, q̂ that are equivalent under lattice symmetries. With these choices,
h⇠

2
i can be extracted as the leading contribution in the real part of V

µ⌫ . (Note that q̂ = (p̂m � p̂e)/2, so it is
quantized in half-integers rather than integers.)

There are two caveats to this argument:
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(31)

where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to

C2(⌧⇡,p) ⇠

��h⇡(p)|O†
⇡(0, 0)|0i

��2

2E⇡
e�E⇡⌧⇡ (33)

C3(⌧e, ⌧m;pe,pm) ⇠
h⇡(p)|O†

⇡(0, 0)|0i

2E⇡
e�E⇡(⌧e+⌧m)/2

Z
d3z eiq·zh0|T

h
Jµ
A

⇣z
2

⌘
J⌫
A

⇣
�
z

2

⌘i
|⇡(p)i

(34)

with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract

Rµ⌫(⌧ ;p,q)=

Z
d3z eiq·zh0|T
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(38)
The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
Note that in our calculational method, we need 40

heavy quark propagators per light quark propagator (2
heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
heavy quark inversion is substantially cheaper than each
light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.

B. Reducing Noise

At the kinematics used, to O(↵s), the second moment
h⇠2i is proportional to the real part of the hadronic tensor
(and the imaginary part of the hadronic tensor is mostly
independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
clean probe of h⇠2i without much contamination from
higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
imaginary part.
The 3-point correlator (and therefore the ratio Rµ⌫) is

pure imaginary2, correspond to the antisymmetric and

2
For p, q in Minkowski space, the hadronic tensor is purely imag-
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Cµ⌫
3 (⌧e, ⌧m;pe,pm) =

Z
d3xe d

3xm eipe·xeeipm·xm

h0|T
⇥
Jµ
A(xe, ⌧e)J

⌫
A(xm, ⌧m)O†

⇡(0, 0)
⇤
|0i

(31)

where T is the time-ordering operator, O⇡ is the pion
interpolating operator, and

Jµ
A ⌘  ̄�µ�5 +  ̄�µ�5 (32)

is the flavor-changing axial current insertion operator
that converts the pion’s light quarks  into valence heavy
quarks  and vice versa. In the large-time limit, the two-
and three-point functions asymptote to

C2(⌧⇡,p) ⇠

��h⇡(p)|O†
⇡(0, 0)|0i

��2

2E⇡
e�E⇡⌧⇡ (33)

C3(⌧e, ⌧m;pe,pm) ⇠
h⇡(p)|O†

⇡(0, 0)|0i

2E⇡
e�E⇡(⌧e+⌧m)/2

Z
d3z eiq·zh0|T

h
Jµ
A

⇣z
2

⌘
J⌫
A

⇣
�
z

2

⌘i
|⇡(p)i

(34)

with

z = xe � xm, (35)

p = pe + pm, (36)

q =
1

2
(pm � pe). (37)

The 3-point correlator is shown graphically in Fig. 3 and
can be computed via a sequential propagator through the
operator. The source and sink of the 2-point function
and the source of the 3-point function are constructed
using both Gaussian and link smearing to suppress ex-
cited state contamination. Fitting C2, C

µ⌫
3 at large ⌧⇡,

⌧e, and ⌧m lets us extract

Rµ⌫(⌧ ;p,q)=

Z
d3z eiq·zh0|T

h
Jµ

⇣z
2

⌘
J⌫

⇣
�
z

2

⌘i
|⇡(p)i

(38)
The hadronic tensor is then defined as the Fourier trans-
form of Rµ⌫ in the ⌧ = z4 direction:

Uµ⌫(p, q) ⌘

Z
d⌧ eiq4⌧R[µ⌫](⌧ ;p,q) (39)

A. Lattice Parameters

In this study, we used Chroma [34] to measure cor-
relators at two heavy quark masses, with bare quark
masses of about 1.6 GeV and 2.5 GeV. (The renor-
malized quark masses found by the fits are substantially
heavier than the bare masses.) To accomodate such large
quark masses, we use fine lattice spacings, ranging from
0.041 fm to 0.060 fm (and with future plans to include
an additional ensemble with a = 0.030 fm). The physical
volumes are tuned to about 1.9 fm on all ensembles.

FIG. 3. The three-point correlation function used to com-
pute the hadronic tensor of the pion. The pion is created at
the origin and flavor-changing axial currents are inserted at
times ⌧e, ⌧m. The quark propagating between the currents
is artifically heavy due to the flavor-changing nature of the
currents.

Due to critical slowing down, using dynamical fermions
would be prohibitively expensive, especially for a pre-
liminary simulation. Therefore, this calculation is per-
formed in the quenched approximation using lattices
from Ref. [35]. The ensembles used here and the mea-
surements performed on them are summarized in Table I.
We use Wilson clover fermions with the clover coe�-

cient set non-perturbatively to the value in Ref. [36]. We
tuned the pion mass to about 560 MeV across the en-
sembles. In addition to reducing the computational cost,
this unphysically heavy pion mass ensures that m⇡L > 5
across our ensembles, suppressing finite-volume e↵ects.
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heavy quark masses ⇥ 10 momentum insertions ⇥ 2
gamma matrices at current insertion). However, each
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light quark inversion, so the large number of heavy
quark inversions needed does not make the calculation
intractable.
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independent of h⇠2i). Thus, measuring Re[Uµ⌫ ] gives a
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higher-twist e↵ects. However, while this is a clean signal,
it is also a small one: At the kinematics used, the real
part of Uµ⌫ is 2–3 orders of magnitude smaller than the
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inary, as can be seen from the operator product expansion. The

p = pe + pm
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to m⇡. The resummation prescription given in [36] is to replace !̃
n by ⇣

n
C
2
n(⌘)/(n + 1)Q̃2, where ⇣ =

p
p2q2/Q̃

2,

⌘ = p · q/
p

p2q2, and C
2
n(⌘) is a Gegenbauer polynomial. In other words,

V
[µ⌫](q, p) = �

2i✏
µ⌫⇢�

q⇢p�

Q̃2
f⇡

1X

n=0,even

C
(n)
W (Q̃2

, µ, m )h⇠ni


⇣
n
C
2
n(⌘)

2n(n + 1)Q̃2

�
. (20)

Truncating at the order of !̃
2,

V
[µ⌫](q, p) ⇡ �

2i✏
µ⌫⇢�

q⇢p�

Q̃2
f⇡

⇢
C

(0)
W (Q̃2

, µ, m ) + C
(2)
W (Q̃2

, µ, m )h⇠2i


⇣
2
C
2
2(⌘)

12Q̃2

��
, (21)

where the explicit one-loop expressions for C
(0)
W (Q̃2

, µ, m ) and C
(2)
W (Q̃2

, µ, m ) are given in Ref. [25]. Equation (21)
is used in this analysis to extract h⇠

2
i. As described in Refs. [14, 25], in addition to h⇠

2
i, f⇡ and m are also fit

parameters in the analysis procedure that will be presented in detail in Sec. V. Note that while the hadronic matrix
element is renormalization scheme and scale independent, the factorization of this matrix element into short-distance
Wilson coe�cients and long-range Mellin moments are dependent on the renormalization scheme and scale. The
calculation of the Wilson coe�cients was determined in the MS scheme and thus the fitted heavy-quark masses and
Mellin moments are directly extracted in this scheme.

B. The correlation functions

The power of the hadronic tensor lies in its amenability to lattice QCD calculations. The pion LCDA defined in
Eq. (1) cannot be computed directly in Euclidean-space LQCD due to the light-like separation vector z. In contrast,
the hadronic tensor V

µ⌫ can be written in terms of quantities calculable on the lattice. Defining

R
µ⌫(⌧ ;p,q) =

Z
d
3z e

iq·z
h0|T [Jµ

A(⌧/2, z/2)J⌫
A(�⌧/2, �z/2)]|⇡(p)i

= h0|J
µ
A(⌧/2; (p + q)/2)J⌫

A(�⌧/2; (p � q)/2)|⇡(p)i , (22)

then the hadronic tensor is the Fourier transform of R
µ⌫ in the temporal direction:

V
µ⌫(q, p) =

Z
d⌧ e

iq4⌧R
µ⌫(⌧ ;p,q) . (23)

Using lattice methods, one can compute two-point and three-point correlation functions

C2(⌧,p) =

Z
d
3x e

ip·x
h0|O⇡(⌧,x)O†

⇡(0,0)|0i

= h0|O⇡(⌧,p)O†
⇡(0,p)|0i , (24)

and

C
µ⌫
3 (⌧e, ⌧m;pe,pm) =

Z
d
3
xe d

3
xm e

ipe·xee
ipm·xmh0|T

⇥
J
µ
A(⌧e,xe)J

⌫
A(⌧m,xm)O†

⇡(0)
⇤
|0i

= h0|J
µ
A(⌧e,pe)J

⌫
A(⌧m,pm)O†

⇡(0,p)|0i . (25)

The three-point correlator is shown diagrammatically in Figure 2.

For 0 ⌧ ⌧ ⌧ T , the 2-point correlator is saturated with the contribution of the lowest-lying hadronic state and can
be written as

C2(⌧,p) ⇠
|Z⇡(p)|2

2E⇡(p)

h
e
�E⇡(p)⌧ + e

�E⇡(p)(T�⌧)
i

, (26)

Double Ratio Method

I Excited state dependent only on sum ⌧e + ⌧m.

Cµ⌫
3 (⌧e , ⌧m; pe , pm) = Rµ⌫(⌧e � ⌧m; p, q)

Z⇡(p)

2E⇡(p)
e�E⇡(p)(⌧e+⌧m)/2 ,

I Construct ratio

R =
Cµ⌫

3 (⌧e � 1, ⌧m + 1; pe , pm)

Cµ⌫
3 (⌧e , ⌧m; pe , pm)

=
Rµ⌫(⌧e � ⌧m � 2; p, q)

Rµ⌫(⌧e � ⌧m; p, q)


1 + . . .

�

I No need for 2-point data!

I No renormalization required.
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To begin, we note that while this function is real in
Minkowski space, it is in general complex in Euclidean
space. This is because p4 = iE⇡(p), and we take q4 real.
Noting again the definitions of the kinematical variables

⌘ =
p · qp
p2q2

, (20)

⇣ =

p
p2q2

Q̃2
. (21)

We see that while ⇣2n is always real, under certain kine-
matical choices, ⌘ is complex:

⌘ =
p · qp
p2q2

+ i
E⇡(p)q4p

p2q2
. (22)

Note that only the even moments are non-zero due to
our assumption of isospin symmetry. The corresponding
Gegenbauer polynomials are also even. Thus we only
have even factors of ⌘, and so we see that if we have the
spatial inner product p · q 6= 0, the coe�cient of

⌦
⇠2
↵

is complex. Note that since the kinematic factors are
absent from the zeroth moment, this allows one separate
the contribution from the lowest moment, and thus gain
direct access to the second moment.

There are several caveats to this. Firstly, the overall
normalization of the HOPE can spoil this result. In par-
ticular consider the term ✏µ⌫↵�q↵p� . In this work, we
study the combination µ = 1, ⌫ = 2. We thus have

✏12↵�q↵p� = q3iE⇡(p)� q4p3. (23)

Since this is an overall multiplicative factor, it will in gen-
eral imbue all the moments (including the zeroth), with
a complex kinematical factor. We can ensure this does
not occur by taking kinematics where either p3 = 0 or
q3 = 0. In either case, the kinematic factor will again be
either purely real or purely imaginary, and thus the spe-
cial kinematics may be used to directly access the second
moment. Secondly, in this discussion we have neglected
the role of the Wilson coe�cients, however, we note that
these can only give corrections which are O(↵S), and
will be numerically small. Thus as we shall see the ‘spe-
cial kinematics’ are still e↵ective in isolating the second
Mellin moment. A demonstration of the special kinemat-
ics is shown in Fig. 2. To summarize, in this work, we
use the conditions

p · q 6= 0, (24)

p3 = 0. (25)

In particular, we choose to perform the simulations with
the momentum

p = (1, 0, 0)⇥ 0.64 GeV, (26)

q = (1/2, 0, 1)⇥ 0.64 GeV, (27)

The reason for the apparent fractional lattice momentum
is that as we shall see the ‘physical’ momenta are linear

FIG. 2. Examining the special kinematics. By choosing the
kinematics p = (1, 0, 0)⇥0.64 GeV, q = (1/2, 0, 1)⇥0.64 GeV
and considering the real and imaginary parts independently,
it is possible to see that while the imaginary part is satu-
rated with the contribution from the lowest moment, the real
part allows one to directly access the second Mellin moment
directly.

combinations of the inserted momenta, and in particu-
lar, we will see that we must include a factor of half in
the definition of q. This kinematic choice leads to less
kinematical suppression;

max[W (0), q4] = 1 (28)

max[W (2), q4] = 0.02, (29)

but most importantly allows one direct access to the sec-
ond Mellin moment. Having now optimized our kinemat-
ical choice, we proceed to discuss the numerical simula-
tion, and resulting extraction of the Mellin moment.

III. LATTICE COMPUTATION

The hadronic tensor is the Fourier transform of a
current-current correlator, so it can be written in terms
of 2- and 3-point functions of the form

C2(⌧⇡,p) =

Z
d3x eip·xh0|O⇡(x, ⌧⇡)O

†
⇡(0, 0)|0i (30)

HOPE hadronic amplitude in TMR 
∫ d3z eiq⋅z⟨0 |T[Jμ

A(z /2)Jν
A(−z /2)] |π(p)⟩

z = xe − xm

Correlators for lattice calculation
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FIG. 7. Excited state contamination at operator separations (a) ⌧ = 0.06 fm and (b) ⌧ = 0.36 fm.

Since ⌧e must be fixed at runtime, ⌧e ⇠ 0.7 fm is chosen, leading to a ⇠ 1% systematic error due to excited-state
contamination. Excited state contamination in the 2-point function is better controlled since one does not need to
choose the source-sink separation at runtime, and one can a↵ord the very conservative fit range of [T/4, 3T/4] since
the statistical errors on the 2-point function are smaller than those on the 3-point function (for an example of the
goodness of fit, see Fig. 8).

V. ANALYSIS, RESULTS AND DISCUSSION

Extraction of the second moment from the 2- and 3-point correlation functions measured here is nontrivial due to
signal contamination by both lattice artifacts and higher-twist e↵ects. The extraction of Z⇡(p), E⇡(p) from fitting the
2-point correlation function C2(⌧,p) at late ⌧ and the construction of R

µ⌫(⌧) in Eq. (22) are relatively straightforward.
However, comparing the 3-point data to the OPE of the hadronic amplitude can be done in multiple ways, which
can lead to somewhat di↵erent systematics. As this is the first numerical study of the HOPE method, two analysis
methods, called the time-momentum analysis and the momentum-space analysis, are performed. This enables a cross-
check of the results and ensures that they are robust against systematics in the analysis procedure. These analysis
methods are as follows:

1. Time-momentum analysis

(i) Fit f⇡ and the heavy quark mass m by comparing the symmetric part of the data to the inverse Fourier
transform of the OPE of Im[V (p, q)], that is, from the inverse Fourier transform of Eq. (41).

(ii) Use the fitted results of f⇡, m and the antisymmetric part of the data to fit the second moment h⇠
2
i from

the inverse Fourier transform of Re[V (p, q)], using Eq. (40), at each heavy quark mass and lattice spacing.

(iii) Perform a combined fit to h⇠
2
i(a, m ) to remove both lattice spacing and higher-twist e↵ects.

2. Momentum-space analysis

(i) Perform a Fourier transform of R
µ⌫(⌧) in the temporal direction.

(ii) Extrapolate the momentum-space hadronic amplitude to the continuum.

(iii) Fit f⇡, m and
⌦
⇠
2
↵

to the hadronic amplitude in the continuum limit using the momentum-space, con-
tinuum HOPE formula presented in Sec. III A.

These alternative procedures are shown diagrammatically in Fig. 9. The following sections will detail both analysis
strategies.
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FIG. 10. The real and imaginary parts of the hadronic tensor V
µ⌫ can be inverse Fourier transformed (indicated by F

�1)
to produce the antisymmetric and symmetric components of the ratio of correlators R

µ⌫ . The symmetric part of R
µ⌫(⌧)

(corresponding to F
�1[Im(V µ⌫)]) is dominated by the zeroth moment contribution, allowing extraction of f⇡ and m . These

are then used as inputs to the fit of F
�1[Re(V µ⌫)] to extract the second moment h⇠

2
i. In order to avoid contamination with

UV divergences near ⌧ = 0, points with ⌧ < 3a (grayed out in the plots) are excluded from the fit.

A. Time-Momentum Analysis

The ratio R
µ⌫ (⌧ ;p,q) was constructed for 0 < ⌧  ⌧max ⇡ 0.6 fm. The statistical quality of the signal deteriorates

with time, and large-⌧ data may be more susceptible to higher-twist contamination, motivating the cut at ⌧max. The
symmetric and anti-symmetric components of R

µ⌫(⌧) are constructed as described in Section II-B.

An example fit to V
µ⌫ for a single heavy quark mass at a single lattice spacing is shown in Fig. 10. At the chosen

kinematics, the second moment provides a negligible contribution to the imaginary part of the hadronic tensor (see
Fig. 5), so the fitting procedure can be split into two steps: one in which f⇡ and m are fit to the imaginary part of
V

µ⌫ and a second step that consists of a single-parameter fit of h⇠
2
i to the real part of V

µ⌫ , where f⇡ and m are
used as inputs. At values of ⌧ comparable to the lattice spacing, uncontrolled discretization e↵ects are to be expected.
Additionally, if the two current insertions are close in space-time relative to the lattice spacing, they may mix with
lower-dimensional operators and lead to UV divergences. Both of these e↵ects suggest that small-⌧ data should be
removed from the fits. Empirically, the �

2 values for the fits to the various heavy-quark masses became reasonable if
the ⌧  2a data are excluded, so all fits will only use data with ⌧ � 3a.

This fitting procedure compares lattice data to a continuum, twist-2 OPE. As a result, the extracted second moment
h⇠

2
i(a, m ) will be contaminated by both lattice artifacts and higher-twist corrections. The lattice artifacts enter at

O(a2) (see Appendices A 2, A 3 for details), and by dimensional analysis, a
2 must be accompanied by two factors of a

mass scale, either the typical momentum scale of ⇤QCD or the heavy quark mass m , so there may be discretization
e↵ects proportional to a

2, a
2
m , or a

2
m

2
 . With am < 1.05, these terms were su�cient to describe lattice artifacts

without need for additional O(a3) terms. Higher-twist e↵ects scale as powers of ⇤QCD/Q̃ or m⇡/Q̃, and ⇤QCD ⇠ m⇡

in this analysis. The fitting procedure e↵ectively integrates over the q4 dependence, and m � |q|, so the twist-
3 contribution can be approximated by a ⇤/m term. Therefore, to extract h⇠

2
i in the continuum limit without

higher-twist contamination, h⇠
2
i(a, m ) is fit to the formula

h⇠
2
i(a, m ) = h⇠

2
i +

A

m 
+ Ba

2 + Ca
2
m + Da

2
m

2
 , (42)

where h⇠
2
i, A, B, C, and D are the fit parameters. At an intermediate mass scale of m = 3 GeV and a lattice

fit  and fπ mΨ fit ⟨ξ2⟩

Im{ }  ( )R[μν](τ; p, q) GeV2 Re{ }  ( )R[μν](τ; p, q) GeV2
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(a) (b)

FIG. 10. The real and imaginary parts of the hadronic tensor V
µ⌫ can be inverse Fourier transformed (indicated by F

�1)
to produce the antisymmetric and symmetric components of the ratio of correlators R

µ⌫ . The symmetric part of R
µ⌫(⌧)

(corresponding to F
�1[Im(V µ⌫)]) is dominated by the zeroth moment contribution, allowing extraction of f⇡ and m . These

are then used as inputs to the fit of F
�1[Re(V µ⌫)] to extract the second moment h⇠

2
i. In order to avoid contamination with

UV divergences near ⌧ = 0, points with ⌧ < 3a (grayed out in the plots) are excluded from the fit.

A. Time-Momentum Analysis

The ratio R
µ⌫ (⌧ ;p,q) was constructed for 0 < ⌧  ⌧max ⇡ 0.6 fm. The statistical quality of the signal deteriorates

with time, and large-⌧ data may be more susceptible to higher-twist contamination, motivating the cut at ⌧max. The
symmetric and anti-symmetric components of R

µ⌫(⌧) are constructed as described in Section II-B.

An example fit to V
µ⌫ for a single heavy quark mass at a single lattice spacing is shown in Fig. 10. At the chosen

kinematics, the second moment provides a negligible contribution to the imaginary part of the hadronic tensor (see
Fig. 5), so the fitting procedure can be split into two steps: one in which f⇡ and m are fit to the imaginary part of
V

µ⌫ and a second step that consists of a single-parameter fit of h⇠
2
i to the real part of V

µ⌫ , where f⇡ and m are
used as inputs. At values of ⌧ comparable to the lattice spacing, uncontrolled discretization e↵ects are to be expected.
Additionally, if the two current insertions are close in space-time relative to the lattice spacing, they may mix with
lower-dimensional operators and lead to UV divergences. Both of these e↵ects suggest that small-⌧ data should be
removed from the fits. Empirically, the �

2 values for the fits to the various heavy-quark masses became reasonable if
the ⌧  2a data are excluded, so all fits will only use data with ⌧ � 3a.

This fitting procedure compares lattice data to a continuum, twist-2 OPE. As a result, the extracted second moment
h⇠

2
i(a, m ) will be contaminated by both lattice artifacts and higher-twist corrections. The lattice artifacts enter at

O(a2) (see Appendices A 2, A 3 for details), and by dimensional analysis, a
2 must be accompanied by two factors of a

mass scale, either the typical momentum scale of ⇤QCD or the heavy quark mass m , so there may be discretization
e↵ects proportional to a

2, a
2
m , or a

2
m

2
 . With am < 1.05, these terms were su�cient to describe lattice artifacts

without need for additional O(a3) terms. Higher-twist e↵ects scale as powers of ⇤QCD/Q̃ or m⇡/Q̃, and ⇤QCD ⇠ m⇡

in this analysis. The fitting procedure e↵ectively integrates over the q4 dependence, and m � |q|, so the twist-
3 contribution can be approximated by a ⇤/m term. Therefore, to extract h⇠

2
i in the continuum limit without

higher-twist contamination, h⇠
2
i(a, m ) is fit to the formula

h⇠
2
i(a, m ) = h⇠

2
i +

A

m 
+ Ba

2 + Ca
2
m + Da

2
m

2
 , (42)

where h⇠
2
i, A, B, C, and D are the fit parameters. At an intermediate mass scale of m = 3 GeV and a lattice

16

0.000 0.002 0.004 0.006
a2 (fm2)

0.15

0.20

0.25

0.30
h
�2

i
m = 1.8 GeV

m = 2.5 GeV

m = 3.3 GeV

m = 3.9 GeV

m = 4.6 GeV

FIG. 11. The values of h⇠
2
i(a,m ) at the gauge couplings and heavy quark masses listed in Table I, plotted as a function of

a
2 with the heavier masses at each lattice spacing displaced slightly to the right for visual clarity. The black star at a

2 = 0
represents the extrapolated value from the fit to Eq. (42).

spacing of a = 0.06 fm, the magnitudes of the various terms are

h⇠
2
i = 0.210 ± 0.013, (43)

A

m 
= 0.009 ± 0.005, (44)

Ba
2 = �0.004 ± 0.013, (45)

Ca
2
m = �0.004 ± 0.013, (46)

Da
2
m

2
 = �0.027 ± 0.006, (47)

where the renormalization scale for h⇠
2
i is taken to be µ = 2 GeV and the error bars are purely statistical. Neither

the higher-twist nor the discretization e↵ects can be neglected at the precision considered in this work. The fit result
for h⇠

2
i is shown in Figure 11.

B. Estimation of Systematic Uncertainties for Time-Momentum Analysis

The analysis procedure described in the previous subsection contains several systematic errors. Excited state con-
tamination in the 3-point function was estimated in Sec. IV F to be a ⇠ 1% e↵ect (and contamination in the 2-point
function is much smaller). Finite-volume e↵ects are expected to scale as 1

m⇡L
e
�m⇡L < 10�3 and are negligible

compared to both statistical and other systematic errors.

This work uses an unphysically heavy pion mass of m⇡ ⇠ 550 MeV. Previous studies [49] have indicated that h⇠
2
i at

such a pion mass di↵ers from its physical value by about 5%. Therefore, this is taken as a systematic e↵ect arising
from the unphysical pion mass.

Other systematic errors can be estimated by studying the e↵ects of changing input parameters or varying the analysis
procedure.

• The global fit described in Eq. (42) restricted the heavy quark masses to those satisfying am < 1.05. To test
whether this cut is su�cient to exclude lattice artifacts of O(a3) or higher, one could choose a more conservative
cut, using only data satisfying am < 0.7. Refitting with this more limited data set results in a fit value of
h⇠

2
i = 0.226 ± 0.043. Although these two results are compatible within one standard deviation, the di↵erence

between the central values (0.016) is taken as the estimate of the systematic uncertainty from the continuum
extrapolation.

(a
,m

Ψ
)
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FIG. 16. Comparison of h⇠
2
i extracted from the time-momentum representation (TMR) and momentum-space analyses to

various results in the literature. Note that the values from this work and Del Debbio et al. are in the quenched approximation,
whereas the results from Zhang et al., Bali et al., and Arthur et al. use dynamical QCD, and the error bars do not reflect the
uncertainty from the quenched approximation.

h⇠
2
i = 0.244 ± 0.030 [51]. These results are compared to the second moment determined in this work in Fig. 16.

Formally, the uncertainty from quenching cannot be controlled, so a precise comparison of the results in this work
to these dynamical calculations is not possible. However, in practice, quenching errors are usually at the order of
10–20%, and the calculation presented here agrees with the dynamical results within the listed uncertainties combined
with this approximate quenching uncertainty.

VI. CONCLUSION AND OUTLOOK

Factorization theorems in QCD imply that the LCDA of the pion is relevant to a variety of experimental processes.
Since the LCDA is a non-perturbative object, it is a quantity of importance for LQCD calculations. While direct
computation of �⇡(⇠, µ) is impossible in a Euclidean field theory, a range of di↵erent theoretical approaches which
allow one to indirectly study the LCDA have been proposed and pursued. These methods include direct calculation
of the local matrix elements [7–11], factorization apporaches like the pseudo-DA approach [17], and a light-quark
operator product expansion [15], have been used or proposed to this e↵ect.

Knowledge of the first non-trivial Mellin moment of the pion
⌦
⇠
2
↵

provides an important constraint on the shape of
the LCDA. Due to the one-loop running behaviour of the Gegenbauer moments, one expects that the second moment
is especially important for the shape of the LCDA at large enough renormalization scale. This quantity has previously
been studied with the conventional approach of calculating the relevant matrix element of the local twist-two operator.
As a result, this quantity is relatively well known and therefore provides a good test of the validity and applicability
of the new methods.

This paper presents the first numerical study of the HOPE method to extract the second Mellin moment of the pion
LCDA. This approach utilizes a quenched fictitious heavy-quark species which enables more control over higher-twist
e↵ects. After a discussion of the numerical calculation of the hadronic matrix element, two alternative approaches were
explored for extracting the second Mellin moment of the pion LCDA from the numerical data. These two approaches
were termed the time-momentum analysis and the momentum-space analysis. Central to both analyses is the fact
that the matrix element has a well-defined continuum limit after multiplicative renormalization.

In the time-momentum analysis, the O(↵s) formula of the HOPE is fit to the lattice data, and the resulting fit
parameters are then extrapolated to the continuum. In the momentum-space analysis, the order of operations is
reversed, and instead after Fourier transforming the lattice data, the correlators are extrapolated to the continuum
before being compared with the O(↵s) continuum HOPE. Both analyses produce results in good agreement with each
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Source of error Size

Statistical 0.013

Excited-state contamination 0.002

Continuum extrapolation 0.012

Higher-twist 0.035

Running coupling 0.029

Unphysical m⇡ 0.014

Total (exc. quenching) 0.046

TABLE III. The error budget for the computation of the second Mellin moment h⇠
2
i using the HOPE method, with the data

analysed in the momentum-space approach.

F. Discussion of Results

The ratio R
[µ⌫](⌧,p,q; a) was analysed using two alternative approaches, termed the time-momentum representation

(TMR) analysis and the momentum-space (Mom) analysis. The results of the second moment from these approaches
are

⌦
⇠
2
↵
TMR

(µ = 2 GeV) = 0.210 ± 0.013 (stat.) ± 0.034 (sys.) = 0.210 ± 0.036 , (57)
⌦
⇠
2
↵
Mom

(µ = 2 GeV) = 0.210 ± 0.013 (stat.) ± 0.044 (sys.) = 0.210 ± 0.046 . (58)

The central values and statistical errors are the same in both approaches. The agreement of central values is the
result of statistical coincidence; with a di↵erent choice of fit parameters this extrapolated central value is expected to
vary. The equivalence of the statistical error is relatively unsurprising, since both approaches mostly share the same
raw lattice data.

As a cross-check, the pion decay constant f
2pt
⇡ = 0.158 ± 0.005 GeV was extracted from a conventional analysis

of the axial-vector 2-point correlation function. This is to be compared with the HOPE-derived values f
TMR
⇡ =

0.161±0.002 (stat.) GeV and f
Mom
⇡ = 0.173±0.001 (stat.) GeV, with systematic uncertainties in f⇡. The systematic

uncertainties in these determinations f⇡ are likely comparable to the systematic uncertainty in h⇠
2
i (about 10-20%),

or perhaps slightly larger due to the added uncertainty in the normalization factors.

Examining both procedures allows the study of the advantages and shortcomings of both approaches and serves as
a further cross-check of the analysis. The above equations show that the time-momentum representation approach
results in a smaller systematic error than that of the momentum-space analysis. While the systematic uncertainty
incurred from the truncation of the twist expansion is the largest systematic error in both analyses, the additional
cut placed on the data in the momentum-space analysis results in the removal of data with the heaviest heavy quark
masses. Since higher-twist corrections are suppressed by factors of 1/Q̃ ⇠ 1/m , this results in less control over the
higher-twist e↵ects.

Given the above considerations, the central value is chosen to be the more precise time-momentum representation
analysis value of

⌦
⇠
2
↵
(µ = 2 GeV) = 0.210 ± 0.036 . (59)

This corresponds to a Gegenbauer moment of

�2(µ = 2 GeV) = 0.03 ± 0.11 . (60)

Most previous lattice calculations have used local operators to compute h⇠
2
i. In the quenched approximation, h⇠

2
i

was previously computed to be 0.280 ± 0.051 at a renormalization scale of µ = 2.67 GeV [9]. Running this down to 2
GeV gives h⇠

2
i = 0.285 ± 0.054, which agrees with this quenched calculation, albeit with a large error bar.

More recent calculations with the local operator method have been performed in dynamical QCD, giving h⇠
2
i =

0.28 ± 0.02 [10] and h⇠
2
i = 0.235 ± 0.008 [50], both at µ = 2 GeV. A separate approach is to proceed via the quasi-

distribution amplitude (the distribution amplitude analogue of the quasi-PDF), which was used to give a result of
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Source of error Size

Statistical 0.013

Continuum extrapolation 0.016

Higher-twist 0.025

Excited-state contamination 0.002

Unphysical m⇡ 0.014

Fit range 0.002

Running coupling 0.008

Total (exc. quenching) 0.036

TABLE II. The error budget for the computation of the second Mellin moment h⇠
2
i using the HOPE method, with the data

processed in the time-momentum representation.

• The global fit contains a ⇤QCD/m term to account for the twist-3 contribution. In principle, higher-twist
contributions are also present. To estimate such systematic e↵ects, one could add a ⇤QCD/m

2
 term to the

global fit in Eq. (42). This changes the fit result to h⇠
2
i = 0.185± 0.017 which has a central value di↵ering from

that of the primary procedure by 0.025. This is taken to be the systematic uncertainty from higher twist e↵ects.

• As explained in Sec. V A, at small values of ⌧ = ⌧m � ⌧e, the data are contaminated with uncontrolled lattice
artifacts. The primary fit omits the ⌧/a = 0, 1, and 2 points, where such e↵ects are the most significant and
result in unacceptable �

2 values in the fits. To analyse errors arising from the placement of this cut, one can
exclude ⌧/a = 3 from the fits, which gives a modified result of h⇠

2
i = 0.208 ± 0.014 and therefore a small

systematic uncertainty from the di↵erence in central values of 0.002.

• The Wilson coe�cients CW are calculated in perturbation theory, and in this analysis, they are only computed
to 1-loop order. As an estimate of the magnitude of higher-loop corrections, one can perform this analysis at
a larger renormalization scale of µ = 4 GeV and then run back to µ = 2 GeV using Eq. (4). Such a procedure
results in h⇠

2
i(µ = 4 GeV) = 0.216 ± 0.012, which evolves to h⇠

2
i(µ = 2 GeV) = 0.218 ± 0.014, giving a

systematic uncertainty of 0.008 from the change in central value.

The above procedure for estimating systematic e↵ects leads to a final value of h⇠
2
i(µ = 2 GeV) = 0.210±0.013 (stat.)±

0.034 (sys.), which can be combined in quadrature to give h⇠
2
i(µ = 2 GeV) = 0.210 ± 0.036 (total, exc. quenching).

The above error estimates are summarized in Table II.

The dominant sources of uncertainty are from the continuum and higher-twist extrapolations. In principle, both these
extrapolations can be better controlled by including finer lattice spacings, which would also allow the inclusion of
larger heavy-quark masses. However, computations at finer lattices are expensive and therefore beyond the scope of
this preliminary work. The error from quenching is formally uncontrollable, although empirically it is a 10–20% e↵ect
in many calculations. To perform a precise comparison of this result to dynamical calculations would require redoing
these calculations on dynamical ensembles.

C. Determination of f⇡

The previous two subsections describe the determination of the second moment of the pion LCDA using the time-
momentum analysis procedure. To check the validity of the HOPE strategy, it is worth noting that the pion decay
constant f⇡ is computed as a byproduct of this analysis. As is clear in the OPE formula, Eq. (21), f⇡ is an overall
normalization factor for the hadronic amplitude V

µ⌫ .

One can extrapolate the f⇡ values computed at various heavy quark masses on the four ensembles to the continuum
using the same procedure as for the extrapolation of h⇠

2
i, giving a global fit value of 161 ± 2 MeV after removal

of lattice discretization and higher-twist e↵ects, where the error reflects statistical uncertainties only. It should be
noted that this measurement su↵ers from not only the systematic errors mentioned in the previous subsection but

TMR analysis errors
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Lattice setting for determining ⟨ξ4⟩
Wilson plaquette and non-perturbatively improved clover actions

p = (2,0,0) q = (1/2,0,1) in units of GeV2π/L ∼ 0.64
Variational analysis with pion interpolating operators  and ψ̄γ5ψ ψ̄γμγ5ψ

Lattice Details

L3
⇥ T a (fm) Ncfg N 

243
⇥ 48 0.0813 6500 2

323
⇥ 64 0.0600 5000 3

403
⇥ 80 0.0502 O(5000) 4

483
⇥ 96 0.0407 O(5000) 5

Still to come...

I Quenched approximation with m⇡ = 550 MeV

I Wilson-clover fermions with non-perturbatively tuned cSW
I With clover term, results fully O(a) improved

I Axial current renormalizes multiplicatively: Aµ
! AµZA(1 + b̃Aam̃q)

Progress in calculation of the fourth Mellin moment of the pion LCDA using the HOPE method: August 9, 2022. 13/ 74

Momentum smearing for pion interpolators

mΨ = 1.3 ∼ 2.3 GeV
mΨ = 2.0 ∼ 3.4 GeV

Work in progress

G.S. Bali et al., PRD93 (2016) 9, 094515



Status of  calculation  
with GEVP and a “double-ratio” strategy

⟨ξ4⟩

Work in progress  More data and reduced error⇒

Status of Calculation
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Calculation of fourth Mellin moment of pion LCDA: December 1, 2022. 19/ 20



Conclusion and outlook: testing the method

HOPE method facilitates high-moments calculations

Numerically well tested via  of ⟨ξ2⟩ ϕπ(ξ, μ)

Other parton-physics quantities planned for the future

Direct calculation for -dependence from HOPEξ
HOPE Collaboration, W. Detmold et al., Phys. Rev. D 104 (2021) 7, 074511

Reasonable exploratory result of  of ⟨ξ4⟩ ϕπ(ξ, μ)



Outlook: precision computations

Planned our calculations on these CLS ensembles

Fixed  to be physicalmstrange

Full-QCD dynamical calculation for  commencedϕπ(ξ, μ)
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Introducing the valence heavy quark

2

In this paper, we discuss an approach to determining matrix elements of higher-spin, twist-two operators in Eq. (3).
This approach is based upon directly studying the OPE on the lattice, as was first investigated in kaon physics in
Ref. [17]. A similar technique has also been applied to determine Wilson coefficients non-perturbatively [18] and
extract the lowest moment of the isovector twist-two quark distribution [19] (our method is related to this latter
work but improves on it in a number of ways). In our proposal, one simulates the Compton scattering tensor
using lattice QCD, with currents coupling the physical light quarks, ψ(x), present in the hadron to a non-dynamical
(purely valence), unphysically heavy quark, Ψ(x).1 The introduction of this heavy quark significantly simplifies
the calculation of isovector matrix elements because it removes the requirement of all-to-all propagators. After
performing an extrapolation to the continuum limit, the lattice data for the Compton tensor are compared to the
predictions of the OPE in Euclidean space to extract the matrix elements of local operators in Eq. (3), directly in
the continuum renormalisation scheme in which the Wilson coefficients are calculated. This approach also removes
the power divergences, thereby enabling extraction of matrix elements of higher spin (n > 4) operators for twist-two
operators with a simple renormalisation procedure. These matrix elements determine the Mellin moments of the
structure functions which are identical in Euclidean space and Minkowski space and their analytical continuation is
trivial. Finally, the chiral and infinite volume extrapolations can now be performed at the level of the local matrix
elements using chiral perturbation theory [21, 22, 23, 24, 25, 26, 27, 28, 29].

The matrix elements obtained via the above procedure are completely independent of the mass of the unphysical,
heavy quark and are indeed physical quantities. This is because such a quark can only propagate between the
bilocal currents, and the OPE relegates its short-distance information to the Wilson coefficients. In addition to the
numerical advantage, it also proves useful to introduce a fictitious heavy quark for other reasons. Firstly, the presence
of the heavy scale suppresses long distance correlations between the currents in a similar way to a large Euclidean
momentum. Combining both the heavy quark mass, mΨ, and momentum injection, q, at the current allows us to
control the behaviour of the OPE precisely at moderate mΨ and q2. The only constraint is

ΛQCD ! mΨ ∼
√

q2 !
1

â
, (4)

where â is the coarsest lattice spacing used in the calculation. Secondly, the non-dynamical nature of the heavy quark
automatically removes many contributions (for example, so-called “cat’s ears” diagrams – see Fig. 1(d) below) that
are higher-twist contaminations in traditional DIS.

In Section II, we review the formalism of DIS with heavy quarks before discussing the extraction of the moments of
twist-two parton distributions from lattice correlators in Section III. Finally in Section IV, we broaden the analysis
to investigate moments of meson distribution amplitudes.

II. FLAVOUR CHANGING CURRENTS AND HEAVY QUARKS IN LEPTON-HADRON
DEEP-INELASTIC SCATTERING

The roles of quark and hadron masses in deep-inelastic scattering have been well studied. Target mass effects were
first discussed by Nachtmann [30] and extensively investigated throughout the 1970s, following the observation of
the precocious scaling of the structure functions [31, 32]. Away from the Bjorken limit, they result in significant
contributions which arise from the OPE being an expansion in terms of operators belonging to definite irreducible
representations of the Lorentz group. These contributions scale as powers of M2/Q2, where M is the target mass and
Q2 = −q2, and can be summed exactly [30, 33, 34, 35]. The effects of the struck and produced quark masses were
also comprehensively investigated [33, 34, 36]. These target and quark mass effects lead to ξ scaling [30, 33, 34, 35],
and are particularly relevant at moderate values of Q2. Since currently available lattice cut-offs are 1/a ∼ 3 GeV,
it is important to include these mass effects in the application of the OPE on the lattice, because of the condition
in Eq. (4). In this section we present the OPE in Euclidean space relevant for computing higher moments of parton
distributions on the lattice with these mass effects taken into account.

We consider fictitious currents that couple light up and down quarks to unphysical heavy quarks of mass mΨ. We
focus on a purely vector coupling, leaving the discussion of other possible currents to the end of the section. We define

Jµ
Ψ,ψ(x) = Ψ(x)γµψ(x) + ψ(x)γµΨ(x) , (5)

1 Such fictitious currents have been used to study quark-hadron duality in heavy quark effective theory [20]. However, in this context the
heavy quark is not a valence quark.
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(a) (b)

(c) (d) (e)

FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.

and construct the Euclidean Compton scattering tensor

T µν
Ψ,ψ(p, q) ≡

∑

S

〈p, S|tµνΨ,ψ(q)|p, S〉 =
∑

S

∫
d4x eiq·x〈p, S|T

[
Jµ

Ψ,ψ(x)JνΨ,ψ(0)
]
|p, S〉 , (6)

(henceforth all momenta are Euclidean).
In the limit q2 → ∞ or mΨ → ∞, T µν

Ψ,ψ is given by the leading-twist contribution, the “handbag diagrams” in

Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)2, which involves purely gluonic operators after the OPE, is
strongly suppressed in our approach and is completely absent in the study of the OPE of the isovector Compton
scattering tensor

T µν
Ψ,v = T µν

Ψ,u − T µν
Ψ,d. (7)

This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.

The twist-two contributions to the OPE in T µν
Ψ,v are from

tµνΨ,ψ = ψγµ
−i
(
iD/
↔

+ q/
)

+ mΨ

(i
↔
D + q)2 + m2

Ψ

γνψ , (8)

and a similar term, Fig. 1 (b), in which µ ↔ ν and q → −q. The derivatives [
↔
Dµ = 1

2

(→
Dµ −

←
Dµ
)
] are included

to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions can be disentangled from their
different q2 behaviour.

Propagating in both space and time

Compton tensor

Valence Not in the action

The “heavy quark” is relativistic

The current for computing the even moments of the PDF



Strategy for extracting the moments

• Simple renormalisation for quark bilinears 

• Work with the hierarchy of scales 
 
 

• Extrapolate to the continuum limit 
        Match to the short-distance OPE results 
        Extract the moments without power divergence
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(a) (b)
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FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.

and construct the Euclidean Compton scattering tensor

T µν
Ψ,ψ(p, q) ≡

∑

S

〈p, S|tµνΨ,ψ(q)|p, S〉 =
∑

S

∫
d4x eiq·x〈p, S|T

[
Jµ

Ψ,ψ(x)JνΨ,ψ(0)
]
|p, S〉 , (6)

(henceforth all momenta are Euclidean).
In the limit q2 → ∞ or mΨ → ∞, T µν

Ψ,ψ is given by the leading-twist contribution, the “handbag diagrams” in

Figs. 1 (a) and (b). The “box diagram”, Fig. 1 (c)2, which involves purely gluonic operators after the OPE, is
strongly suppressed in our approach and is completely absent in the study of the OPE of the isovector Compton
scattering tensor

T µν
Ψ,v = T µν

Ψ,u − T µν
Ψ,d. (7)

This makes the extraction of moments of the isovector quark distributions practical, and we focus on this case in this
paper.

At moderate q2 and mΨ, higher-twist terms also contribute. However, the non-dynamical nature of the fictitious
heavy quark entirely eliminates the higher-twist contributions involving more than one quark propagator between the
currents, e.g., the “cat’s ears diagram” in Fig. 1 (d). The diagrams in Fig. 1 (e) contain pieces that contribute to the
twist-two operators in Eqs. (12) and (13), and also higher-twist terms that are discussed below.

The twist-two contributions to the OPE in T µν
Ψ,v are from

tµνΨ,ψ = ψγµ
−i
(
iD/
↔

+ q/
)

+ mΨ

(i
↔
D + q)2 + m2

Ψ

γνψ , (8)

and a similar term, Fig. 1 (b), in which µ ↔ ν and q → −q. The derivatives [
↔
Dµ = 1

2

(→
Dµ −

←
Dµ
)
] are included

to account for the soft transverse momentum of the struck quark; they are covariant in order to maintain gauge-
invariance.

2 In Fig. 1 (c), we specify that the large momentum, q2, flows through the three light-quark lines; the contributions in which these quarks
have soft momenta are already included in Figs. 1 (a) and (b). In principle, these gluonic contributions can be disentangled from their
different q2 behaviour.
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ΛQCD ! mΨ ∼
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q2 !
1

â
, (4)
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1 Such fictitious currents have been used to study quark-hadron duality in heavy quark effective theory [20]. However, in this context the
heavy quark is not a valence quark.
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FIG. 1: Contributions to the Compton scattering tensor. Diagrams (a), (b) and (c) correspond to the leading twist contributions.
Diagram (c) (the “box diagram”) involves gluonic operators and vanishes for the isovector combination, Eq. (7). Diagram (d)
(the “cat’s ears diagram”) is higher-twist and absent in our analysis. Diagram (e) includes leading- and higher-twist terms and
is discussed in the main text. The thick lines correspond to the heavy-quark propagators, the shaded circles to the heavy-light
currents and the large shaded regions to the various parton distributions.
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TABLE I. The ensembles used in this study and the number of measurements performed on each.

� a (fm) L3 ⇥ T light heavy, 1 heavy, 2 Ncfg Nsrc Light Props Heavy Props
6.30168 0.060 323 ⇥ 64 0.135146 0.119867 0.112779 450 7 3150 126,000
6.43306 0.048 403 ⇥ 80 0.135170 0.122604 0.116599 250 2 500 20,000
6.59773 0.041 483 ⇥ 96 0.135028 0.124420 0.119228 341 3 1023 40,920

symmetric parts of Rµ⌫ . Specifically,

Re[Uµ⌫(p, q)] = Re

Z 1

�1
d⌧ Rµ⌫(⌧ ;p,q)e�iq4⌧

�

/

Z 1

0
d⌧ [Rµ⌫(⌧ ;p,q)�Rµ⌫(�⌧ ;p,q)] sin(q4⌧)

(40)

Thus, we need to measure a di↵erence Rµ⌫(⌧ ;p,q) �
Rµ⌫(�⌧ ;p,q) that is two orders of magnitude smaller
than each of the terms constituting the di↵erence. The
precision to which we can measure this di↵erence depends
on how well the two terms are correlated (which would
cause correlated errors to cancel). However, for moder-
ately large ⌧ , the correlators Cµ⌫

3 (⌧e, ⌧e± ⌧ ;pe,pm) used
to compute Rµ⌫(±⌧ ;p,q) have poorly correlated uncer-
tainties since the sinks are temporally separated on the
lattice.

We could obtain better correlations – and there-
fore better error cancellation – if we could com-
pute Rµ⌫(�⌧ ;p,q) using Cµ⌫

3 (⌧m, ⌧e;pe,pm), since
then the correlators used to compute Rµ⌫(⌧ ;p,q) and
Rµ⌫(�⌧ ;p,q) would be at the same timeslices (up to in-
terchange of the two current insertions). However, with
the current setup where the sequential propagator passes
through the first current inserted, this would require cur-
rent insertions at all desired ⌧m, which would be pro-
hibitively expensive. Instead, we use �5-hermiticity to
write

Cµ⌫
3 (⌧e, ⌧m;pe,pm)⇤ = C⌫µ

3 (⌧m, ⌧e;�pm,�pe) (41)

where pe and pm are related to p and q via (36), (37).
This lets us compute both terms in the right-hand side
of (40) in terms of correlators with ⌧m � ⌧e, since

Rµ⌫(⌧ ;p,q)�Rµ⌫(�⌧ ;p,q) = Rµ⌫(⌧ ;p,q)+Rµ⌫(⌧ ;�p,q)
(42)

Now, the terms in the right-hand side of (42) are more
highly correlated, so we would expect larger cancellation
of correlated errors. This e↵ect is shown in Fig. 4, where
uncertainties are reduced by a factor of about 10 by using
the right-hand side of (42) rather than the left-hand side.

Euclidean-space data Rµ⌫
are related to the Minkowski-space

hadronic tensor via Laplace transform

Uµ⌫
(q, p) =

Z 1

�1
d⌧ e�q0⌧Rµ⌫

(⌧ ;q,p)

whose kernel is purely real for real q0. Thus, if Uµ⌫
with q0 2 R

is imaginary, Rµ⌫
(⌧ ;p,q) must be too.

FIG. 4. Comparing both sides of the equality in (42)
Rµ⌫(⌧ ;p,q) + Rµ⌫(⌧ ;�p,q) (blue) and Rµ⌫(⌧ ;p,q) �
Rµ⌫(�⌧ ;p,q) (earth), both measured with two sources on 450
configurations. These quantities agree in expectation, but the
former has uncertainties an order of magnitude smaller than
the latter.

IV. FITTING TO THE HOPE

At the kinematics used here, the nth moment picks up

a factor of
⇣

p·q
Q̃

⌘n
. 0.12n, so the contribution of fourth

moment is suppressed by a factor of about 50 relative to
that of the second moment. As a result, in this work,
we will neglect higher-moment contributions, so we can
write the operator product expansion as

Uµ⌫ =
2if⇡"µ⌫⇢�q⇢p�

Q̃2


C
(0)
W + h⇠2i

6(p · q)2 � p2q2

6(Q̃2)2
C
(2)
W

+ · · ·+O

✓
⇤QCD

Q̃

◆�

(43)

where Q̃2 = �m2
 � q2, m is the renormalized heavy

quark mass, and C
(n)
W are perturbatively calculable Wil-

son coe�cients. For this analysis, we have calculated the
Wilson coe�cients to 1-loop order, and we will publish
the results in forthcoming work [33]. The remaining pa-
rameters (f⇡,m , h⇠2i) will be fit to the data.
In principle, one could measure f⇡ separately using

the pion-axial current. However, measurements involv-
ing heavy quarks are known to involve additional nor-
malization factors, which have been approximated by El-
Khadra, Kronfeld, and Mackenzie [37]. If we fit f⇡ from
the hadronic tensor, any errors in this overall normaliza-

We work with  where Minkowskian  is imaginary.|ω | < 1 Vμν

From ;p,q).Vμν
Minkowski(p, q) = ∫

∞

−∞
dτ e−q0τ Rμν(τ
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FIG. 6. A comparison of the real part of the hadronic tensor computed using Eq. (37) versus Eq. (40), the latter of which
has been manipulated to reduce the statistical error. While the manipulations do not change the expectation of the correlator,
they reduce statistical uncertainties by about an order of magnitude. For comparison purposes, both quantities were measured
on 2 sources on each of 450 configurations.

more tractable if the two terms are highly correlated, as this increases the statistical power of the correlated di↵erence.
These correlations are substantially enhanced if values of C

µ⌫
3 for ⌧ < 0 are obtained using the identity6

C
µ⌫
3 (⌧e, ⌧m;pe,pm)⇤ = C

⌫µ
3 (⌧m, ⌧e; �pm, �pe) . (39)

Then Eq. (37) and (38) can be written as

Re[V µ⌫(p, q)] =

Z 1

0
d⌧ [Rµ⌫(⌧ ;p,q) + R

µ⌫(⌧ ; �p,q)] sin(q4⌧) , (40)

Im[V µ⌫(p, q)] =

Z 1

0
d⌧ [Rµ⌫(⌧ ;p,q) � R

µ⌫(⌧ ; �p,q)] cos(q4⌧) . (41)

Consequently, one can obtain both ⌧ > 0 and ⌧ < 0 at the same sets of current insertion times, which will enhance
the correlations. A demonstration of this reduction in statistical error is shown in Figure 6.

F. Excited State Contamination and Choice of ⌧e

The three point correlator C
µ⌫
3 (⌧e, ⌧m) = hJ

µ
A(⌧e)J⌫

A(⌧m)O†
⇡(0)i is computed by creating a pion source, propagating

one of the quarks forward to ⌧e, creating a sequential source, and then tying together the sequential heavy-quark
propagator and the other light quark propagator at the sink. Since ⌧e  ⌧m is chosen in this work, excited state
e↵ects arise from the fact that the combination of states created by the pion interpolator have not fully relaxed to
the ground state before ⌧e, so they are suppressed exponentially in ⌧e. Excited-state e↵ects are reduced by using a
Gaussian-smeared pion source [48] with smearing radius equal to the inverse pion mass (awsmear = {4.5, 6.0, 8.0, 9.0}

for L/a = {24, 32, 40, 48}, respectively). With this smearing, numerical study on the L/a = 32 lattices showed that
excited state contamination is estimated to be about 1% for a source-operator separation ⌧e of about 0.7 fm, as shown
in Figure 7.

6 This identity can be proven by writing C
µ⌫
3 in terms of the quark propagators

C
µ⌫
3 (⌧e, ⌧m;pe,pm) =

Z
d
3xe d

3xm e
ipe·xe+ipm·xmTr

h
�5D

�1
 (0|xm)�5�⌫D

�1
 (xm|xe)�5�µD

�1
 (xe|0)

i
,

and applying �5-hermiticity to each of the propagators.

2 sources on 450 configs 
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Double Ratio Method

I Excited state dependent only on sum ⌧e + ⌧m.

Cµ⌫
3 (⌧e , ⌧m; pe , pm) = Rµ⌫(⌧e � ⌧m; p, q)

Z⇡(p)

2E⇡(p)
e�E⇡(p)(⌧e+⌧m)/2 ,

I Construct ratio

R =
Cµ⌫

3 (⌧e � 1, ⌧m + 1; pe , pm)

Cµ⌫
3 (⌧e , ⌧m; pe , pm)

=
Rµ⌫(⌧e � ⌧m � 2; p, q)

Rµ⌫(⌧e � ⌧m; p, q)


1 + . . .

�

I No need for 2-point data!

I No renormalization required.

Progress in calculation of the fourth Mellin moment of the pion LCDA using the HOPE method: August 9, 2022. 12/ 74

The “double ratio” method

No need for renormalisation
No need for two-point function

Construct the ratio

Propagation of the excited states depends only on τe + τm
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Excited-state contamination for p = (2,0,0)


