PACS10 project

- larger than $(10 \mathrm{fm})^{4}$ volume simulation at physical point -

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

Challenges and opportunities in Lattice QCD simulations and related fields

PACS10 project

PACS Collaboration

Tsukuba
N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani,
Т. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié

Hiroshima
K.-I. Ishikawa, N. Namekawa

Kyoto
H. Watanabe

Riken-CCS
Y. Aoki, Y. Nakamura

Tohoku
S. Sasaki, R. Tsuji

PACS10 project

PACS Collaboration

Tsukuba N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani, T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié
Hiroshima K.-I. Ishikawa, N. Namekawa
Kyoto H. Watanabe
Riken-CCS Y. Aoki, Y. Nakamura
Tohoku S. Sasaki, R. Tsuji

Larger than (10 fm $)^{4}$ volume

PACS10 project

PACS Collaboration

Tsukuba N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani, T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié

Hiroshima K.-I. Ishikawa, N. Namekawa
Kyoto H. Watanabe
Riken-CCS Y. Aoki, Y. Nakamura
Tohoku S. Sasaki, R. Tsuji

Larger than (10 fm $)^{4}$ volume

Purpose of PACS10 project
Removing main systematic uncertainties in lattice QCD three $N_{f}=2+1$ ensembles at physical m_{π} on $(10 \mathrm{fm})^{4}$ volume

Outline

- PACS10 project
- PACS10 configuration
- Results with PACS10 configuration
- Light meson spectrum
- Hadron vacuum polarization
- Electromagnetic meson form factors
- Kaon semileptonic decay form factor
- Summary

PACS10 project since 2016

	PACS10 configuration		
$L^{3} \cdot T$	128^{4}	160^{4}	256^{4}
$L[\mathrm{fm}]$	10.9	10.2	~ 10
$a[\mathrm{fm}]$	0.08	0.06	0.04
$m_{\pi}[\mathrm{GeV}]$	0.135	0.138	~ 0.135
$m_{K}[\mathrm{GeV}]$	0.497	0.505	~ 0.497
Machine	OFP	OFP	OFP \rightarrow Fugaku
Node	512	512	$2048 \rightarrow 16384$

OFP: Oakforest-PACS (KNL machine)
PACS10 configuration
$N_{f}=2+1$ nonperturbatively $O(a)$ improved Wilson clover quark action with 6-stout smeared link + Iwasaki gauge action
same actions as HPCI Field 5 project using K computer [PoS LATTICE2015 (2016) 075]
a^{-1} determined from \equiv baryon mass

Fugaku co-design outcome:
QCD Wide SIMD (QWS) Library for Fugaku [Ishikawa et al.:CPC(2023)]

PACS10 project since 2016

	PACS10 configuration			
$L^{3} \cdot T$	128^{4}	160^{4}	256^{4}	64^{4}
$L[\mathrm{fm}]$	10.9	10.2	~ 10	5.5
$a[\mathrm{fm}]$	0.08	0.06	0.04	0.08
$m_{\pi}[\mathrm{GeV}]$	0.135	0.138	~ 0.135	0.138
$m_{K}[\mathrm{GeV}]$	0.497	0.505	~ 0.497	0.498
Machine	OFP	OFP	OFP \rightarrow Fugaku	OFP
Node	512	512	$2048 \rightarrow 16384$	128

OFP: Oakforest-PACS (KNL machine)

PACS10 configuration

$N_{f}=2+1$ nonperturbatively $O(a)$ improved Wilson clover quark action with 6 -stout smeared link + Iwasaki gauge action

Removing main systematic uncertainties in $N_{f}=2+1$ lattice QCD

- chiral extrapolation
- finite volume effect

Coarsest lattice spacing: finite volume study using 128^{4} and 64^{4}

- finite lattice spacing effect

Results of PACS10 project

precise determination of physical quantity from lattice QCD
I. quantitatively understand property of hadrons
reproduce experimental values in high accuracy

- Hadron spectrum
- Nucleon form factor Sasaki
- Light meson electromagnetic form factor
II. search for new physics beyond the standard model discrepancy between theoretical calculation and experiment
- Nucleon charge Tsuji
- Proton decay matrix element
- Hadron vacuum polarization
- Kaon semileptonic decay form factor

Finite volume study of m_{π}

fixed $\kappa_{\text {ud }}: 128^{4}$ and 64^{4} (original) m_{π} on 64^{4} (original) is 3 MeV larger than 128^{4} similar behavior in $m_{\text {ud }}^{\mathrm{AWI}}$
fixed $m_{\text {ud }}^{\mathrm{AWI}: ~} 128^{4}$ and 64^{4} (reweighted) discrepancy disappears
\rightarrow discrepancy not physical finite V effect, but due to shift of κ_{c} less than $0.7(3) \%$ finite V effect in m_{H} and f_{H} [PACS:PRD99(2019);PRD100(2019)]

Ratio of decay constants [Preliminary result]

$L^{3} \cdot T$	128^{4}	160^{4}
$a[\mathrm{fm}]$	0.08	0.06
$m_{\pi}[\mathrm{GeV}]$	0.135	0.138
$m_{K}[\mathrm{GeV}]$	0.497	0.505

Short m_{π} and m_{K} extrapolation to physial point using m_{π} and m_{K} dependences determined from 64^{4} reweigted data

Two a results are consistent with FLAG'21 value
Slight upward dependence towards $a \rightarrow 0$
3rd PACS10 configuration is importand for $a \rightarrow 0$ extrapolation
Preliminary result: Central value and statistical error from 160^{4} systematic error from difference between 160^{4} and 128^{4}

Hadron vacuum polarization

$r_{\text {cut }}$: cut of coordinate space summation
[PACS:PRD98(2018);PRD100(2019)]

About twice larger finite volume effect than NLO ChPT comparing between 128^{4} and 64^{4}
Linear continuum extrapolation using 128^{4} and 160^{4} w/o disconnected, iB effect comparable with other groups and consistent with experiment
also consistent with BNL+FNAL result [Snowmass 2021:arXiv:2203.15810]

Electromagnetic meson form factors [Preliminary result]

[blue lines: PDG'21 values with monopole form]

Access to tiny q^{2} thanks to huge L
Two a data reasonably agree with PDG w/o chiral extrapolation Seem to be small a effect in $F_{K}\left(q^{2}\right)$

Pion and kaon charge radii [Preliminary result]

Charge radius $F\left(q^{2}\right)=1-\frac{1}{6} q^{2}\left\langle r^{2}\right\rangle+\cdots$

Good agreement with other lattice results and PDG values

$\left\langle r_{K}^{2}\right\rangle$: smaller error than PDG value
(gray bands)

Direct calculation of derivative of form factor
model-independent calculation: [Sato et al: PoS(Lattice2022)]; cf) [Feng et al.:PRD101(R)(2020)]

Kaon semileptonic ($K_{\ell 3}$) decay form factor

Introduction

$\left|V_{u s}\right|: \gtrsim 2 \sigma$ discrepancy between experiment and standard model \rightarrow a candidate of BSM signal

```
Most accurate |Vus| from }\mp@subsup{K}{\ell3}{}\mathrm{ decay
                            [FNAL/MILC19]
~ 2\sigma from SM (gray band)
using CKM unitarity |\mp@subsup{V}{us}{}|}\approx\sqrt{}{1-|\mp@subsup{V}{ud}{}\mp@subsup{|}{}{2}
~5\sigma from SM w/ new | }\mp@subsup{V}{ud}{}|\mathrm{ (cyan band)
    [Seng et al.:PRL121,241804(2018)]
~2\sigma from }\mp@subsup{K}{\ell2}{(green star)
```


Important to confirm by several independent calculations

Introduction

$\left|V_{u s}\right|: \gtrsim 2 \sigma$ discrepancy between experiment and standard model \rightarrow a candidate of BSM signal

Most accurate $\left|V_{u s}\right|$ from $K_{\ell 3}$ decay [FNAL/MILC19]
using CKM unitarity $\left|V_{u s}\right| \approx \sqrt{1-\left|V_{u d}\right|^{2}}$
$\sim 5 \sigma$ from SM w/ new $\left|V_{u d}\right|$ (cyan band)
[Seng et al.:PRL121(2018)]
$\sim 3 \sigma$ from $\mathrm{SM} \mathrm{w} /$ recent $\left|V_{u d}\right|$ (gray
band) [Hardy and Towner et al.:PRC102(2020)]
$\sim 2 \sigma$ from $K_{\ell 2}$ (green star)

Important to confirm by several independent calculations
$K_{\ell 3}$ form factors with PACS10 configurations [PACS20,21]

$$
L=10.9[\mathrm{fm}] \text { at physical point }
$$

Negligible finite L effect, tiny q^{2} region, without chiral extrapolation

Simulation parameters

PACS10 configurations: $L \gtrsim 10[\mathrm{fm}]$ at physical point

β	$L^{3} \cdot T$	$L[\mathrm{fm}]$	$a[\mathrm{fm}]$	$a^{-1}[\mathrm{GeV}]$	$M_{\pi}[\mathrm{MeV}]$	$M_{K}[\mathrm{MeV}]$	$N_{\text {conf }}$
1.82	128^{4}	10.9	0.085	2.3162	135	497	20
2.00	160^{4}	10.2	0.063	3.1108	138	505	20

Parameters for $K_{\ell 3}$ form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$

β	source	$t_{\text {sep }}[\mathrm{fm}]$	current
1.82	R-local	$3.1,3.6,4.1$	local, conserved
2.00	R-local	$3.2,3.7,4.1$	local, conserved
	R-smear	$2.3,2.7,3.1,3.5$	local, conserved

R-local: $Z(2) \times Z(2)$ random source spread in spatial volume, spin, color spaces
R-smear: R-local + exponential smearing
Combined analysis with two source data at $\beta=2.00$
Matrix element from $t_{\text {sep }}$ dependence
Two vector currents at each β
$K_{\ell 3}$ form factors $f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$
$K_{\ell 3}$ form factors $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$

$$
\begin{aligned}
& \langle\pi(p)| V_{\mu}|K(0)\rangle=\left(p_{K}+p_{\pi}\right) \mu f_{+}\left(q^{2}\right)+\left(p_{K}-p_{\pi}\right)_{\mu} f_{-}\left(q^{2}\right) \\
& f_{0}\left(q^{2}\right)=f_{+}\left(q^{2}\right)-\frac{q^{2}}{M_{K}^{2}-M_{\pi}^{2}} f_{-}\left(q^{2}\right) \\
& p_{K}=\left(M_{K}, \mathbf{0}\right), p_{\pi}=\left(E_{\pi}, \vec{p}\right) \\
& q^{2}=-\left(M_{K}-E_{\pi}\right)^{2}+p^{2}
\end{aligned}
$$

$q^{2} \rightarrow 0$ interpolation $+a \rightarrow 0$ extrapolation for $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$
with two current data at two a

Physical quantities from $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$

1. $f_{+}(0)\left(=f_{0}(0)\right) \rightarrow\left|V_{u s}\right| \quad\left|V_{u s}\right| f_{+}(0)=0.21654(41)$ [Moulson:PoS(CKM2016)]
2. slope and curvature

$$
\lambda_{+}^{(n)}=\frac{M_{\pi^{-}}^{2 n}}{f_{+}(0)} \frac{d^{n} f_{+}(0)}{d\left(-q^{2}\right)^{n}}, \lambda_{0}^{(n)}=\frac{M_{\pi^{-}}^{2 n}}{f_{+}(0)} \frac{d^{n} f_{0}(0)}{d\left(-q^{2}\right)^{n}}
$$

3. Phase space integral
$f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ at two lattice spacings

Access tiny q^{2} region thanks to $L \sim 10[f m]$
$f_{+}\left(q^{2}\right)$: No visible difference in all q^{2}
$f_{0}\left(q^{2}\right)$: Little difference in small q^{2}
\rightarrow Small a effect in $q^{2} \sim 0$ in local current data

$f_{+}\left(q^{2}\right)$ and $f_{0}\left(q^{2}\right)$ at two lattice spacings

Access tiny q^{2} region thanks to $L \sim 10[\mathrm{fm}]$

Larger a effect in conserved current data

q^{2} interpolation $+a \rightarrow 0$ extrapolation

Fit based on SU(3) NLO ChPT with $f_{+}(0)=f_{0}(0)$ [PACS:PRD106(2022)]

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=1-\frac{4}{F_{0}^{2}} L_{9}(\mu) q^{2}+K_{+}\left(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu\right)+c_{0}+c_{2}^{+} q^{4}+g_{+}^{\text {cur }}\left(a, q^{2}\right) \\
& f_{0}\left(q^{2}\right)=1-\frac{8}{F_{0}^{2}} L_{5}(\mu) q^{2}+K_{0}\left(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu\right)+c_{0}+c_{2}^{0} q^{4}+g_{0}^{\text {cur }}\left(a, q^{2}\right) \\
& K_{+}, K_{0}: \text { known functions ['85 Gasser, Leutwyler] } \\
& g_{+, 0}^{\text {cur }}=\sum_{n, m} e_{+, 0}^{\text {cur,nm }} a^{n} q^{2 m}, \text { cur }=\text { local, conserved: } 3 \text { types (fit A,B,C) investigated }
\end{aligned}
$$

free parameters: $L_{5}(\mu), L_{9}(\mu), c_{0}, c_{2}^{+}, c_{2}^{0}+e_{+, 0}^{\text {cur,nm }}$
fixed parameters: $\mu=0.77 \mathrm{GeV}, F_{0}=0.11205 \mathrm{GeV}$
F_{0} estimated from FLAG $F^{\mathrm{SU}(2)} / F_{0} \mathrm{w} / F^{\mathrm{SU}(2)}=0.129 \mathrm{GeV}$

Simultaneous fit for $\left(f_{+}, f_{0}\right)$ with (local,conserved) works well.
Tiny extrapolation to physical $M_{\pi^{-}}$and $M_{K^{0}}$ using same formulas

q^{2} interpolation $+a \rightarrow 0$ extrapolation

Fit based on $\operatorname{SU}(3) \mathrm{NLO}$ ChPT with $f_{+}(0)=f_{0}(0)$ [PACS:PRD106(2022)]

$$
\begin{aligned}
& f_{+}\left(q^{2}\right)=1-\frac{4}{F_{0}^{2}} L_{g}(\mu) q^{2}+K_{+}\left(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu\right)+c_{0}+c_{2}^{+} q^{4}+g_{+}^{\text {cur }}\left(a, q^{2}\right) \\
& f_{0}\left(q^{2}\right)=1-\frac{8}{F_{0}^{2}} L_{5}(\mu) q^{2}+K_{0}\left(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu\right)+c_{0}+c_{2}^{0} q^{4}+g_{0}^{\text {cur }}\left(a, q^{2}\right) \\
& g_{+, 0}^{\text {cur }}=\sum_{n, m} e_{+, 0}^{\text {curr }} \text {, } a^{n} q^{2 m} \text {, cur }=\text { local, conserved: } 3 \text { types (fit A,B,C) investigated } \\
& f_{+}(0)=0.9615(10)\left({ }_{-2}^{+47}\right)(5)
\end{aligned}
$$

uncertainty: 1st statistical, 2nd fit form + data, 3rd isospin breaking w/ NLO ChPT

Continum extrapolation at $q^{2}=0$

local current: almost flat
conserved current: clear a dependence
Similar trend seen in HVP calculation ['19 PACS]

fit form	local	conserved
fit A	C_{0}	$C_{0}+C_{1}^{\prime} a$
fit B	$C_{0}+C_{2} a^{2}$	$C_{0}+C_{2}^{\prime} a^{2}$

\rightarrow Iarge systematic error from $a \rightarrow 0$ fit form
Smaller a data will improve $a \rightarrow 0$ extrapolation.

```
\(f_{+}(0)\) and \(\left|V_{u s}\right|\)
```


inner, outer $=$ statistical, total(stat. + sys.)

Standard model cyan band: ['18 Seng et al.]; grey band: ['20 Hardy, Towner]

f_{+}(0): Reasonably agree with previous lattice calculations $\lesssim 2 \sigma$

$\left|V_{u s}\right|$ using $\left|V_{u s}\right| f_{+}(0)=0.21654(41)$ ['17 Moulson]
agree with $\left|V_{u s}\right|$ from $K_{\ell 2}$ using f_{K} / f_{π}
$2 \sim 3 \sigma$ difference from CKM unitarity (grey and cyan bands)
Future work: $a \rightarrow 0$ extrapolation with 3rd PACS10 configuration

Shape of $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$ at $q^{2}=0 \quad \lambda_{+, 0}^{(n)}=\frac{M_{\pi}^{2 n}}{f_{+}(0)} \frac{d^{n} f_{+, 0}(0)}{d\left(-q^{2}\right)^{n}}$
slope

curvature

local and conserved data degenerate at each a, except for λ_{+}^{\prime} \rightarrow large dependence on choice of $g_{+, 0}^{\text {cur }}$ Smaller a data will improve $a \rightarrow 0$ extrapolation.

Shape of $f_{+}\left(q^{2}\right), f_{0}\left(q^{2}\right)$ at $q^{2}=0$

$$
\begin{aligned}
& \text { Slope } \\
& \lambda_{+, 0}^{\prime}=\frac{M_{\pi^{-}}^{2}}{f_{+}(0)} \frac{d f_{+, 0}\left(q^{2}\right)}{d\left(-q^{2}\right)}
\end{aligned}
$$

curvature

$$
\lambda_{+, 0}^{\prime \prime}=\frac{M_{\pi^{-}}^{4}}{f_{+}(0)} \frac{d^{2} f_{+, 0}\left(q^{2}\right)}{d\left(-q^{2}\right)^{2}}
$$

Large uncertainty from fit form of $a \rightarrow 0$
Comparable with experiment (grey band), dispersive representation,
['10 Antonelli et al.; '17 Moulson; '09 Bernard et al.] and also previous lattice calculations ['09, '16 ETM; '17 JLQCD, '20 PACS]

Phase space integral I_{K}^{ℓ}

$$
\begin{aligned}
& \Gamma_{K_{\ell 3}}=C_{K_{\ell 3}}\left(\left|V_{u s}\right| f_{+}(0)\right)^{2} I_{K}^{\ell} \quad \Gamma_{K_{3}}: \text { decay width, } C_{K_{3}}: \text { known factor, } \ell=e, \mu \\
& \left|V_{u s}\right| f_{+}(0)=0.21654(41)[\text { ['17 Moulson] } \\
& \qquad I_{K}^{\ell} \text { from dispersive representation of experimental } \bar{F}_{+, 0}(t)
\end{aligned}
$$

$$
I_{K}^{\ell}=\int_{m_{\ell}^{2}}^{\left(M_{K}-M_{\pi}\right)^{2}} d t\left(J_{+}(t) \bar{F}_{+}^{2}(t)+J_{0}(t) \bar{F}_{0}^{2}(t)\right), \quad \bar{F}_{+, 0}(t)=\frac{f_{+, 0}(-t)}{f_{+}(0)}
$$

$$
J_{+, 0}(t): \text { known function ['84 Leutwyler, Roos] }
$$

Reasonably agree with experimental values ['10 Antonelli et al.] Large uncertainty from fit form of $a \rightarrow 0$
$\left|V_{u s}\right|$ using I_{K}^{ℓ}

$$
\left|V_{u s}\right|=\sqrt{\frac{\Gamma_{K_{\ell 3}}}{C_{K_{\ell 3}}\left(f_{+}(0)\right)^{2} I_{K}^{\ell}}} \quad \text { Two parts calculated from lattice QCD }
$$

Weighted average of 6 decay processes using experimental errors Good agreement with $\left|V_{u s}\right|$ using only $f_{+}(0)$

Summary

PACS10 Project

calculation w/o three main systematic uncertainties in lattice QCD
PACS10 configuraiton:
$V \gtrsim(10 \mathrm{fm})^{4}$ in physical point at three lattice spacings
various calculations w/ 2 lattice spacings

- Hadron spectrum
- Nucleon charge and form factor
- Light meson electromagnetic form factor
- Proton decay matrix element
- Hadron vacuum polarization
- Kaon semileptonic decay form factor

Future works

> Calculations with 3rd PACS10 configuration
more reliable $a \rightarrow 0$ extrapolations

