– larger than $(10 \text{fm})^4$ volume simulation at physical point –

Takeshi Yamazaki

University of Tsukuba

Center for Computational Sciences

Challenges and opportunities in Lattice QCD simulations and related fields @ Riken CCS, February 15-17 2023

PACS Collaboration

Tsukuba

N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani,

T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié

Hiroshima

K.-I. Ishikawa, N. Namekawa

Kyoto

H. Watanabe

Riken-CCS

Y. Aoki, Y. Nakamura

Tohoku

S. Sasaki, R. Tsuji

PACS Collaboration

Tsukuba	N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintar			
	T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié			
Hiroshima	KI. Ishikawa, N. Namekawa			
Kyoto	H. Watanabe			
Riken-CCS	Y. Aoki, Y. Nakamura			
Tohoku	S. Sasaki, R. Tsuji			

Larger than $(10 \text{ fm})^4$ volume

PACS Collaboration

Tsukuba	N. Ishizuka, Y. Kuramashi, K. Sato, E. Shintani,		
	T. Taniguchi, N. Ukita, T. Yamazaki, T. Yoshié		
Hiroshima	KI. Ishikawa, N. Namekawa		
Kyoto	H. Watanabe		
Riken-CCS	Y. Aoki, Y. Nakamura		
Tohoku	S. Sasaki, R. Tsuji		

Larger than $(10 \text{ fm})^4$ volume

Purpose of PACS10 project

Removing main systematic uncertainties in lattice QCD three $N_f = 2 + 1$ ensembles at physical m_{π} on (10 fm)⁴ volume

Outline

• PACS10 project

- PACS10 configuration
- Results with PACS10 configuration
 - Light meson spectrum
 - Hadron vacuum polarization
 - Electromagnetic meson form factors
- Kaon semileptonic decay form factor
- Summary

PACS10 project since 2016

	PA	CS10 c	onfiguration
$L^3 \cdot T$	128 ⁴	160 ⁴	256 ⁴
<i>L</i> [fm]	10.9	10.2	~ 10
a [fm]	0.08	0.06	0.04
m_{π} [GeV]	0.135	0.138	~ 0.135
$m_K \; [\text{GeV}]$	0.497	0.505	$\sim \! 0.497$
Machine	OFP	OFP	OFP→Fugaku
Node	512	512	2048→16384

OFP: Oakforest-PACS (KNL machine)

PACS10 configuration

 $N_f = 2 + 1$ nonperturbatively O(a) improved Wilson clover quark action with 6-stout smeared link + Iwasaki gauge action

same actions as HPCI Field 5 project using K computer [PoS LATTICE2015 (2016) 075]

 a^{-1} determined from Ξ baryon mass

Fugaku co-design outcome:

QCD Wide SIMD (QWS) Library for Fugaku [Ishikawa et al.:CPC(2023)]

PACS10 project since 2016

	PACS10 configuration			
$L^3 \cdot T$	128 ⁴	160 ⁴	256 ⁴	64 ⁴
<i>L</i> [fm]	10.9	10.2	~ 10	5.5
<i>a</i> [fm]	0.08	0.06	0.04	0.08
m_{π} [GeV]	0.135	0.138	$\sim \! 0.135$	0.138
m_K [GeV]	0.497	0.505	${\sim}0.497$	0.498
Machine	OFP	OFP	OFP→Fugaku	OFP
Node	512	512	2048→16384	128

OFP: Oakforest-PACS (KNL machine)

PACS10 configuration

 $N_f = 2 + 1$ nonperturbatively O(a) improved Wilson clover quark action with 6-stout smeared link + Iwasaki gauge action

Removing main systematic uncertainties in $N_f = 2 + 1$ lattice QCD

- chiral extrapolation
- finite volume effect

Coarsest lattice spacing: finite volume study using 128⁴ and 64⁴

• finite lattice spacing effect

Results of PACS10 project

precise determination of physical quantity from lattice QCD

- I. quantitatively understand property of hadrons reproduce experimental values in high accuracy
 - Hadron spectrum
 - Nucleon form factor Sasaki
 - Light meson electromagnetic form factor
- II. search for new physics beyond the standard model discrepancy between theoretical calculation and experiment
 - Nucleon charge Tsuji
 - Proton decay matrix element
 - Hadron vacuum polarization
 - Kaon semileptonic decay form factor

Finite volume study of m_{π}

 64^4 (reweighted)

20

10

0.056

0.055

[PACS:PRD99(2019)]

60

fixed $\kappa_{\rm ud}$: 128⁴ and 64⁴ (original) m_{π} on 64⁴ (original) is 3 MeV larger than 128⁴ similar behavior in $m_{\rm ud}^{\rm AWI}$

fixed $m_{\rm ud}^{\rm AWI}$: 128⁴ and 64⁴ (reweighted) discrepancy disappears

30

 \rightarrow discrepancy not physical finite V effect, but due to shift of κ_c less than 0.7(3)% finite V effect in m_H and f_H [PACS:PRD99(2019);PRD100(2019)]

0.0013

Ratio of decay constants [Preliminary result]

$L^3 \cdot T$	128 ⁴	160 ⁴	
<i>a</i> [fm]	0.08	0.06	
m_{π} [GeV]	0.135	0.138	
$m_K \; [{\rm GeV}]$	0.497	0.505	

Short m_{π} and m_{K} extrapolation to physial point using m_{π} and m_{K} dependences determined from 64⁴ reweigted data

Two a results are consistent with FLAG'21 value

Slight upward dependence towards $a \rightarrow 0$

3rd PACS10 configuration is importand for $a \rightarrow 0$ extrapolation

Preliminary result: Central value and statistical error from 160⁴ systematic error from difference between 160⁴ and 128⁴

)

About twice larger finite volume effect than NLO ChPT comparing between 128^4 and 64^4

Linear continuum extrapolation using 128⁴ and 160⁴ w/o disconnected, IB effect comparable with other groups and consistent with experiment also consistent with BNL+FNAL result [Snowmass 2021:arXiv:2203.15810]

Electromagnetic meson form factors [Preliminary result]

Access to tiny q^2 thanks to huge L Two a data reasonably agree with PDG w/o chiral extrapolation Seem to be small a effect in $F_K(q^2)$

Pion and kaon charge radii [Preliminary result]

only statistical error in our results

Good agreement with other lattice results and PDG values

(gray bands)

$$\langle r_K^2 \rangle$$
: smaller error than PDG value

Direct calculation of derivative of form factor model-independent calculation: [Sato *et al.*:PoS(Lattice2022)]; cf) [Feng *et al.*:PRD101(R)(2020)]

Kaon semileptonic $(K_{\ell 3})$ decay form factor

Introduction

 $|V_{us}|: \gtrsim 2\sigma$ discrepancy between experiment and standard model \rightarrow a candidate of BSM signal

Important to confirm by several independent calculations

Introduction

 $|V_{us}|: \gtrsim 2\sigma$ discrepancy between experiment and standard model \rightarrow a candidate of BSM signal

Important to confirm by several independent calculations

 $K_{\ell 3}$ form factors with PACS10 configurations [PACS20,21] L = 10.9[fm] at physical point Negligible finite L effect, tiny q^2 region, without chiral extrapolation

Simulation parameters

PACS10 configurations: $L \gtrsim 10$ [fm] at physical point

β	$L^3 \cdot T$	L[fm]	a[fm]	a^{-1} [GeV]	M_{π} [MeV]	M_K [MeV]	N _{conf}
1.82	128 ⁴	10.9	0.085	2.3162	135	497	20
2.00	160 ⁴	10.2	0.063	3.1108	138	505	20

Parameters for $K_{\ell 3}$ form factors $f_+(q^2)$ and $f_0(q^2)$

β	source	$t_{sep}[fm]$	current
1.82	R-local	3.1, 3.6, 4.1	local, conserved
2.00	R-local	3.2, 3.7, 4.1	local, conserved
	R-smear	2.3, 2.7, 3.1, 3.5	local, conserved

R-local: $Z(2) \times Z(2)$ random source spread in spatial volume, spin, color spaces R-smear: R-local + exponential smearing [RBC-UKQCD:JHEP07,112(2008)]

Combined analysis with two source data at $\beta=2.00$

Matrix element from t_{sep} dependence

Two vector currents at each β

 $K_{\ell 3}$ form factors $f_+(q^2)$ and $f_0(q^2)$

$$K_{\ell 3} \text{ form factors } f_{+}(q^{2}), f_{0}(q^{2})$$

$$\langle \pi(p) | V_{\mu} | K(0) \rangle = (p_{K} + p_{\pi})_{\mu} f_{+}(q^{2}) + (p_{K} - p_{\pi})_{\mu} f_{-}(q^{2})$$

$$f_{0}(q^{2}) = f_{+}(q^{2}) - \frac{q^{2}}{M_{K}^{2} - M_{\pi}^{2}} f_{-}(q^{2})$$

$$p_{K} = (M_{K}, 0), p_{\pi} = (E_{\pi}, \vec{p})$$

$$q^{2} = -(M_{K} - E_{\pi})^{2} + p^{2}$$

 $q^2 \to 0$ interpolation + $a \to 0$ extrapolation for $f_+(q^2), f_0(q^2)$ with two current data at two a

Physical quantities from $f_+(q^2), f_0(q^2)$

- 1. $f_{+}(0) (= f_{0}(0)) \rightarrow |V_{us}| |V_{us}|_{f_{+}(0)} = 0.21654(41) [Moulson:PoS(CKM2016)]$
- 2. slope and curvature

$$\lambda_{+}^{(n)} = \frac{M_{\pi^{-}}^{2n}}{f_{+}(0)} \frac{d^{n} f_{+}(0)}{d(-q^{2})^{n}}, \ \lambda_{0}^{(n)} = \frac{M_{\pi^{-}}^{2n}}{f_{+}(0)} \frac{d^{n} f_{0}(0)}{d(-q^{2})^{n}}$$

3. Phase space integral

 $f_+(q^2)$ and $f_0(q^2)$ at two lattice spacings

Access tiny q^2 region thanks to $L \sim 10$ [fm]

 $f_+(q^2)$: No visible difference in all q^2

 $f_0(q^2)$: Little difference in small q^2

 \rightarrow Small a effect in $q^2 \sim 0$ in local current data

 $f_+(q^2)$ and $f_0(q^2)$ at two lattice spacings

Access tiny q^2 region thanks to $L \sim 10$ [fm]

Larger a effect in conserved current data

q^2 interpolation + $a \rightarrow 0$ extrapolation

Fit based on SU(3) NLO ChPT with $f_+(0) = f_0(0)$ [PACS:PRD106(2022)]

$$f_{+}(q^{2}) = 1 - \frac{4}{F_{0}^{2}}L_{9}(\mu)q^{2} + K_{+}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{+}q^{4} + g_{+}^{\text{cur}}(a, q^{2})$$

$$f_{0}(q^{2}) = 1 - \frac{8}{F_{0}^{2}}L_{5}(\mu)q^{2} + K_{0}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{0}q^{4} + g_{0}^{\text{cur}}(a, q^{2})$$

 K_+, K_0 : known functions ['85 Gasser, Leutwyler] $g_{+,0}^{cur} = \sum_{n,m} e_{+,0}^{cur,nm} a^n q^{2m}$, cur = local, conserved: 3 types (fit A,B,C) investigated free parameters: $L_5(\mu), L_9(\mu), c_0, c_2^+, c_2^0 + e_{+,0}^{cur,nm}$

fixed parameters: $\mu = 0.77$ GeV, $F_0 = 0.11205$ GeV

Simultaneous fit for (f_+, f_0) with (local, conserved) works well.

Tiny extrapolation to physical M_{π^-} and M_{K^0} using same formulas

q^2 interpolation + $a \rightarrow 0$ extrapolation Fit based on SU(3) NLO ChPT with $f_+(0) = f_0(0)$ [PACS:PRD106(2022)] $f_{+}(q^{2}) = 1 - \frac{4}{F_{0}^{2}}L_{9}(\mu)q^{2} + K_{+}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{+}q^{4} + g_{+}^{\text{cur}}(a, q^{2})$ $f_{0}(q^{2}) = 1 - \frac{8}{F_{0}^{2}}L_{5}(\mu)q^{2} + K_{0}(q^{2}, M_{\pi}^{2}, M_{K}^{2}, F_{0}, \mu) + c_{0} + c_{2}^{0}q^{4} + g_{0}^{\text{cur}}(a, q^{2})$ $g_{+,0}^{cur} = \sum_{n,m} e_{+,0}^{cur,nm} a^n q^{2m}$, cur = local, conserved: 3 types (fit A,B,C) investigated 1.15 a→0 fit form fit A $f_{+}(q^{2})$ fit B $f_0(q^2)$ 1.10 fit C monopole a²→0 fit form quadratic 1.05 w/ fit A z-expansion local 1.00 data set smeared w/ NLO ChPT, fit A A2 0.95 narrow q² continuum limit only $f_{1}(q^{2})$ fit A 0.90 only $f_0(q^2)$ -0.1 -0.05 0 0.05 0.955 0.960 0.965 0.970 a² [GeV²] f (0) $f_{+}(0) = 0.9615(10)\binom{+47}{-2}(5)$

uncertainty: 1st statistical, 2nd fit form + data, 3rd isospin breaking w/ NLO ChPT

Continuum extrapolation at $q^2 = 0$

local current: almost flat

conserved current: clear a dependence

Similar trend seen in HVP calculation ['19 PACS]

fit form	local	conserved
fit A	C_{O}	$C_0 + C'_1 a$
fit B	$C_0 + C_2 a^2$	$C_0 + C'_2 a^2$

 \rightarrow large systematic error from $a \rightarrow 0$ fit form

Smaller a data will improve $a \rightarrow 0$ extrapolation.

$f_+(0)$ and $|V_{us}|$

 $f_+(0)$: Reasonably agree with previous lattice calculations $\leq 2\sigma$

 $|V_{us}|$ using $|V_{us}|f_+(0) = 0.21654(41)$ ['17 Moulson]

agree with $|V_{us}|$ from $K_{\ell 2}$ using f_K/f_π

 $2 \sim 3\sigma$ difference from CKM unitarity (grey and cyan bands)

Future work: $a \rightarrow 0$ extrapolation with 3rd PACS10 configuration

Shape of $f_{+}(q^{2}), f_{0}(q^{2})$ at $q^{2} = 0$

Large uncertainty from fit form of $a \rightarrow 0$ Comparable with experiment (grey band), dispersive representation, ['10 Antonelli *et al.*; '17 Moulson; '09 Bernard *et al.*]

and also previous lattice calculations ['09, '16 ETM; '17 JLQCD, '20 PACS]

Phase space integral I_K^ℓ

$$\begin{split} & \Gamma_{K_{\ell 3}} = C_{K_{\ell 3}} (|V_{us}| f_{+}(0))^{2} I_{K}^{\ell} \quad \Gamma_{K_{\ell 3}}: \text{ decay width, } C_{K_{\ell 3}}: \text{ known factor, } \ell = e, \mu \\ & |V_{us}| f_{+}(0) = 0.21654(41) \text{ ['17 Moulson]} \end{split}$$

 $\leftarrow I_K^\ell$ from dispersive representation of experimental $\overline{F}_{+,0}(t)$

$$I_{K}^{\ell} = \int_{m_{\ell}^{2}}^{(M_{K}-M_{\pi})^{2}} dt \left(J_{+}(t)\overline{F}_{+}^{2}(t) + J_{0}(t)\overline{F}_{0}^{2}(t) \right), \quad \overline{F}_{+,0}(t) = \frac{f_{+,0}(-t)}{f_{+}(0)}$$

Reasonably agree with experimental values ['10 Antonelli *et al.*] Large uncertainty from fit form of $a \rightarrow 0$

$|V_{us}|$ using I_K^ℓ

$$|V_{us}| = \sqrt{\frac{\Gamma_{K_{\ell 3}}}{C_{K_{\ell 3}}(f_{+}(0))^{2}I_{K}^{\ell}}}$$

Two parts calculated from lattice QCD $\Gamma_{K_{\ell 3}}, C_{K_{\ell 3}}$ ['10 Antonelli *et al.*, '18 Seng *et al.*, '20 Seng *et al.*]

Weighted average of 6 decay processes using experimental errors Good agreement with $|V_{us}|$ using only $f_+(0)$

Summary

PACS10 Project

calculation w/o three main systematic uncertainties in lattice QCD

PACS10 configuration:

 $V \gtrsim (10 \text{fm})^4$ in physical point at three lattice spacings

various calculations w/ 2 lattice spacings

- Hadron spectrum
- Nucleon charge and form factor
- Light meson electromagnetic form factor
- Proton decay matrix element
- Hadron vacuum polarization
- Kaon semileptonic decay form factor

Future works

Calculations with 3rd PACS10 configuration

more reliable $a \rightarrow 0$ extrapolations